Побочный продукт фотосинтеза. Значение фотосинтеза

Бесхлорофилльный фотосинтез

Пространственная локализация

Фотосинтез растений осуществляется в хлоропластах : обособленных двухмембранных органеллах клетки. Хлоропласты могут быть в клетках плодов , стеблей , однако основным органом фотосинтеза, анатомически приспособленным к его ведению, является лист . В листе наиболее богата хлоропластами ткань палисадной паренхимы. У некоторых суккулентов с вырожденными листьями (например, кактусы) основная фотосинтетическая активность связана со стеблем.

Свет для фотосинтеза захватывается более полно благодаря плоской форме листа, обеспечивающей большое отношение поверхности к объёму. Вода доставляется из корня по развитой сети сосудов (жилок листа). Углекислый газ поступает отчасти посредством диффузии через кутикулу и эпидермис , однако большая его часть диффундирует в лист через устьица и по листу по межклеточному пространству. Растения, осуществляющие CAM фотосинтез, сформировали особые механизмы для активной ассимиляции углекислого газа.

Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые соединяясь друг с другом образуют тилакоиды , которые в свою очередь группируются в стопки, называемые граны . Внутритилакоидное пространство отделено и не сообщается с остальной стромой, предполагается также что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO 2 происходит в строме.

В хлоропластах имеются свои ДНК , РНК , рибосомы (70s типа), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза .

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Циклический и псевдоциклический транспорт электрона

Помимо полного нециклического пути электрона, описанного выше, обнаружены циклический и псевдоциклический.

Суть циклического пути заключается в том, что ферредоксин вместо НАДФ восстанавливает пластохинон, который переносит его назад на b 6 f комплекс. В результате образуется больший протонный градиент и больше АТФ, но не возникает НАДФН.

При псевдоциклическом пути ферредоксин восстанавливает кислород, который в дальнейшем превращается в воду и может быть использован в фотосистеме II. При этом также не образуется НАДФН.

Темновая стадия

В темновой стадии с участием АТФ и НАДФН происходит восстановление CO 2 до глюкозы (C 6 H 12 O 6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

С 3 -фотосинтез, цикл Кальвина

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.

Наконец, две ФГА необходимы для синтеза глюкозы . Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO 2 , 12 НАДФН и 18 АТФ.

С 4 -фотосинтез

Основные статьи: Цикл Хетча-Слэка-Карпилова , С4-фотосинтез

При низкой концентрации растворённого в строме CO 2 рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания .

Для увеличения концентрации CO 2 растения С 4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата , возвращаемого в клетки мезофилла.

С 4 фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO 2 в лист, а также при рудеральной жизненной стратегии.

САМ фотосинтез

Позже было установлено, что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В Роберт Майер на основании закона сохранения энергии постулировал, что растения преобразуют энергию солнечного света в энергию химических связей. В В. Пфеффер назвал этот процесс фотосинтезом.

Хлорофиллы были впервые выделены в П. Ж. Пельтье и Ж. Кавенту. Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии . Спектры поглощения хлорофилла были изучены К. А. Тимирязевым , он же, развивая положения Майера, показал, что именно поглощенные лучи позволяют повысить энергию системы, создав вместо слабых связей С-О и О-Н высокоэнергетические С-С (до этого считалось что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO 2: в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось, что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.

Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль . Это означало, что кислород в фотосинтезе образуется полностью из воды, что экспериментально подтвердил в А. П. Виноградов в опытах с изотопной меткой. В г. Роберт Хилл установил, что процесс окисления воды (и выделения кислорода), а также ассимиляции CO 2 можно разобщить. В - Д. Арнон установил механизм световых стадий фотосинтеза, а сущность процесса ассимиляции CO 2 была раскрыта Мельвином Кальвином с использованием изотопов углерода в конце 1940-х , за эту работу в ему была присуждена Нобелевская премия .

Прочие факты

См. также

Литература

  • Холл Д., Рао К. Фотосинтез: Пер. с англ. - М.: Мир, 1983.
  • Физиология растений / под ред. проф. Ермакова И. П. - М.: Академия, 2007
  • Молекулярная биология клетки / Альбертис Б., Брей Д. и др. В 3 тт. - М.: Мир, 1994
  • Рубин А. Б. Биофизика. В 2 тт. - М.: Изд. Московского университета и Наука, 2004.
  • Чернавская Н. М.,

Фотосинтез - это процесс образования органических веществ в зелёных растениях. Фотосинтез создал всю массу растений на Земле и насытил атмосферу кислородом.

Как питается растение?

Раньше люди были уверены, что все вещества для своего питания растения берут из почвы. Но один опыт показал, что это не так.

В горшок с землёй было посажено дерево. При этом измерили массу и земли, и дерева. Когда через несколько лет снова взвесили то и другое, оказалось, что масса земли уменьшилась всего на несколько граммов, а масса растения увеличилась на много килограммов.

В почву вносили только воду. Откуда же взялись эти килограммы растительной массы?

Из воздуха. Все органические вещества растений созданы из углекислого газа атмосферы и почвенной воды.

ТОП-2 статьи которые читают вместе с этой

Энергия

Животные и человек питаются растениями, чтобы получить энергию для жизни. Эта энергия содержится в химических связях органических веществ. Откуда она там?

Известно, что растение не может нормально расти без света. Свет и является энергией, с помощью которой растение строит органические вещества своего тела.

Не важно какой это свет, солнечный или электрический. Любой луч света несёт энергию, которая становится энергией химический связей и как клей удерживает атомы в больших молекулах органических веществ.

Где идёт фотосинтез

Фотосинтез проходит только в зелёных частях растений, а точней, в особых органах растительных клеток - хлоропластах.

Рис. 1. Хлоропласты под микроскопом.

Хлоропласты являются разновидностью пластид. Они всегда зелёные, т. к. содержат вещество зелёного цвета - хлорофилл.

Хлоропласт отделён от остального объёма клетки мембраной и имеет вид зёрнышка. Внутреннее пространство хлоропласта называется стромой. В ней и начинаются процессы фотосинтеза.

Рис. 2. Внутреннее строение хлоропласта.

Хлоропласты являются как бы фабрикой, на которую поступает сырьё:

  • углекислый газ (формула – СО₂);
  • вода (Н₂О).

Вода поступает из корней, а углекислый газ - из атмосферы через особые отверстия в листьях. Свет является энергией для работы фабрики, а полученные органические вещества - продукцией.

Сначала производятся углеводы (глюкоза), но впоследствии из них образуется множество веществ различных запахов и вкусов, которые так любят животные и люди.

Из хлоропластов полученные вещества транспортируются в различные органы растения, где откладываются в запас, либо используются.

Реакция фотосинтеза

В общем виде уравнение фотосинтеза выглядит так:

СО₂ + Н₂О = органические вещества + О₂ (кислород)

Зелёные растения входят в группу автотрофов (в переводе - «сам питаюсь») - организмов, которым для получения энергии не нужны другие организмы.

Основная функция фотосинтеза - создание органических веществ, из которых строится тело растений.

Выделение кислорода - побочный эффект процесса.

Значение фотосинтеза

Роль фотосинтеза в природе чрезвычайно велика. Благодаря ему создан весь растительный мир планеты.

Рис. 3. Фотосинтез.

Благодаря фотосинтезу растения:

  • являются источником кислорода для атмосферы;
  • переводят энергию солнца в доступную для животных и человека форму.

Жизнь на Земле стала возможной при накоплении достаточного количества кислорода в атмосфере. Ни человек, ни животные не смогли бы жить в те далёкие времена, когда его не было, или было мало.

Какая наука изучает процесс фотосинтеза

Фотосинтез изучают разные науки, но больше всего ботаника и физиология растений.

Ботаника - это наука о растениях и, поэтому изучает его как важный жизненный процесс растений.

Наиболее подробно изучает фотосинтез физиология растений. Учёные-физиологи определили, что этот процесс сложный и имеет стадии:

  • световую;
  • темновую.

Это значит, что фотосинтез начинается на свету, но заканчивается в темноте.

Что мы узнали?

Изучив данную тему по биологии 5 класса, можно объяснить кратко и понятно фотосинтез как процесс образования в растениях органических веществ из неорганических (СО₂ и Н₂О). Его особенности: проходит в зелёных пластидах (хлоропластах), сопровождается выделением кислорода, осуществляется под действием света.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 793.

Любой зеленый листик – это миниатюрная фабрика питательных веществ и кислорода, который необходим животным и человеку для нормальной жизнедеятельности. Процесс выработки данных веществ из воды и углекислоты из атмосферы называют фотосинтезом. Фотосинтез – это сложнейший химический процесс, который происходит с участием света. Конечно же, всем интересно как происходит фотосинтез. Сам процесс состоит из двух этапов: первый - это поглощение квантов света, а второй - использование их энергии в разных химических реакциях.

Как происходит процесс фотосинтеза

Растение поглощает свет при помощи зеленого вещества, которое называется хлорофилл. Хлорофилл содержится в хлоропластах, которые находятся в стеблях или плодах. Особенно большое их количество в листьях, потому что из-за своей очень плоской структуры листок может притянуть много света, соответственно, получить намного больше энергии для процесса фотосинтеза.

После поглощения хлорофилл находится в возбужденном состоянии и передает энергию другим молекулам организма растения, особенно, тем, которые непосредственно участвуют в фотосинтезе. Второй этап процесса фотосинтеза проходит уже без обязательного участия света и состоит в получении химической связи с участием углекислого газа, получаемого из воздуха и воды. На данной стадии синтезируются разные очень полезные для жизнедеятельности вещества, такие как крахмал и глюкоза.

Эти органические вещества используют сами растения для питания разных его частей, а также для поддержания нормальной жизнедеятельности. Кроме того, эти вещества также получают и животные, питаясь растениями. Люди тоже получают эти вещества, употребляя в пищу продукты животного и растительного происхождения.

Условия для фотосинтеза

Фотосинтез может происходить как под действием искусственного света, так и солнечного. Как правило, на природе растения интенсивно «работают» в весенне-летний период, когда необходимого солнечного света много. Осенью света меньше, день укорачивается, листья сначала желтеют, а потом опадают. Но стоит появиться весеннему теплому солнцу, как зеленая листва вновь появляется и зеленые «фабрики» снова возобновят свою работу, чтобы давать кислород, такой необходимый для жизни, а также множество других питательных веществ.

Где происходит фотосинтез

В основном фотосинтез, как процесс, происходит, как это уже было сказано, в листьях растений, потому как они способны принять на себя больше солнечного света, который очень необходим для процесса фотосинтеза.

Как итог можно сказать то, что процесс фотосинтеза является неотъемлемой частью жизнедеятельности растений.

ФОТОСИНТЕЗ – это

фотосинтез – это углеводы .

Общая характеристика

I Световая фаза

1. Фотофизический этап

2. Фотохимический этап

II Темновая фаза

3.

ЗНАЧЕНИЕ

4. Озоновый экран.

Пигменты фотосинтезирующих растений, их физиологическая роль.

· Хлорофилл – это зелёный пигмент, обуславливающий окраску зелёного цвета растению, при его участии обусловлен процесс фотосинтеза. По химическому строению это Mg-комплекс различных тетрапирролов. Хлорофиллы имеют порфириновое строение, структурно близки к гему.

В пиррольных группировках хлорофилла имеются системы, чередующихся двойных и простых связей. Это и есть хромофорная группа хлорофилла, обуславливающиеся поглощение определённых лучей солнечного спектра и его окраску. D порфировые ядра составляют 10 нм, а длина фитольного остатка 2 нм.

Молекулы хлорофилла полярно, её порфириновое ядро обладает гидрофильными свойствами, а фитольный конец гидрофобными. Это свойство молекулы хлорофилла обуславливают определённое расположение её в мембранах хлоропласта.

Порфириновая часть молекулы связана с белком, а фитольная часть погружена в липидный слой.

Хлорофилл живой интактной клетки обладает способностью к обратимому фотоокислению и фотовосстановлению. Способность к окислительно-восстановительным реакциям связано с наличием в молекуле хлорофилла сопряжённых двойных связей с подвижными п-элктронами и атомами N с неопределёнными электронами.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) избирательно поглощать энергию света,

2) запасать ее в виде энергии электронного возбуждения,

3) фотохимически преобразовывать энергию возбужденного состояния в химическую энергию первичных фотовосстановленных и фотоокисленных соединений.

· Каротиноиды- это жирорастворимые пигменты желтого, оранжевого, красного цвета - присутствуют в хлоропластах всех растений. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротиноиды имеют максимальное поглощение в фиолетово-синей и синей частях спектра света. Они не способны к флуоресценции в отличие от хлорофилла.

К каротиноидам относятся 3 группы соединения:

Оранжевые, или красные каротины;

Жёлтые ксантофиллы;

Каротиноидные кислоты.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Поглощение света в качестве дополнительных пигментов;

2) Защита молекул хлорофилла от необратимого фотоокисления;

3) Тушение активных радикалов;

4) Участвуют в фототропизме, т.к. способствуют направлению роста побега.

· Фикобилины – это красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Фикобилины состоят из 4-х последовательных пиррольных колец. Фикобилины являются хромофорными группами глобулиновых белков, который называется фикобилинпротеинами. Он делятся на:

- фикоэритрины – белки красного цвета;

- фикоцианин – синеголубые белки;

- алофикоцианин – синие белки.

Все они обладают флуоресценирущей способностью. Фикобилины имею максимальное поглощение в оранжевых, жёлтых и зелёных частях спектра света и позволяют водорослям полнее использовать свет, проникающий в воду.

На глубине 30 м полностью исчезают красные лучи

На глубине 180 м – жёлтые

На глубине 320 м – зелёные

На глубине более 500 м не проникают синие и фиолетовые лучи.

Фикобилины – это дополнительные пигменты примерно 90% энергии света, поглощающего фикобилинами передаётся на хлорофилл.

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ

1) Максимумы поглощения света у фикобилинов находятся между двумя максимумами поглощения у хлорофилла: в оранжевой, желтой и зеленой частях спектр.

2) Фикобилины выполняют у водорослей функции светособирающего комплекса.

3) У растений имеется фикобилин-фитохрм, он не участвет в фотосинтезе, но является фоторецептором красного света и выполняет регуляторную функцию в клетках растений.

Сущность фотофизического этапа. Фотохимический этап. Циклический и нециклический транспорт электронов.

Сущность фотофизического этапа

Фотофизический этап наиболее важный, т.к. осуществляет переход и преобразование энергии одной системы в другую (в живую из неживой).

Фотохимический этап

Фото-химически реакции фотосинтеза – это реакции в которых энергия света преобразуется в энергию химических связей в первую очередь в энергию фосфорных связей АТФ . Именно АТФ обеспечивает течение всех процессов, одновременно под действием света происходит разложение воды, образуется восстановленный НАДФ и выделяется О2 .

Энергия поглощенных квантов света стекается от сотен молекул пигментов свето-собирающего комплекса к одной молекула-хлорофилла-ловушке отдавая электрон акцептору – окисляется. Электрон поступает в электронно-транспортную цепь, предполагается, что свето-собирающий комплекс состоит из 3-х частей:

· главного антенного компонента

· двух фото фиксирующих систем.

Комплекс антенного хлорофилла погружен в толщу мембраны тилакоидов хлоропластов совокупность антенных молекул пигментов и реакционного центра составляет фотосистему в процессе фотосинтеза принимает участие 2 фотосистемы:

· установленно, что фотосистема 1 включает светофокусирующие пигменты и реакционный центр 1 ,

· фотосистема 2 включает светофокусирующие пигменты и реакционный центр 2 .

Хлорофилл-ловушка фотосистемы 1 поглощает свет с длинной волны700нм . Во второй системе 680нм . Свет поглащается рздельно этими двумя фотосистемами и нормальное осуществление фотосинтеза требует их одновременного участия. Перенос по цепи переносчиков включает ряд окислительно-восстновительных реакций при которых происходит перенос либо атома водорода, либо электронов.

Различают два типа потока электронов:

· циклический

· нециклический.

При циклическом потоке электроны от молекулы хлорофилла передаются к акцептору от молекулы хлорофилла и возвращаются к ней обратно , при нециклическом потоке происходит фотоокисление воды и передача электрона от воды к НАДФ , выделяемая в ходе окислительно-восстановительных реакций энергия частично используется на синтез АТФ.

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Фотосистема II

Фотосистема - совокупность ССК, фотохимического реакционного центра и переносчиков электрона. Светособирающий комплекс II содержит 200 молекул хлорофилла a, 100 молекул хлорофилла b, 50 молекул каротиноидов и 2 молекулы феофитина. Реакционный центр фотосистемы II представляет собой пигмент-белковый комплекс, расположенный в тилакоидных мембранах и окружённый ССК. В нём находится димер хлорофилла a с максимумом поглощения при 680 нм (П680). На него в конечном счёте передаётся энергия кванта света из ССК, в результате чего один из электронов переходит на более высокое энергетическое состояние, связь его с ядром ослабляется и возбуждённая молекула П680 становится сильным восстановителем (E0=-0,7 В).

П680 восстанавливает феофитин, в дальнейшем электрон переносится на хиноны, входящие в состав ФС II и далее на пластохиноны, транспортируемые в восстановленной форме к b6f комплексу. Одна молекула пластохинона переносит 2 электрона и 2 протона, которые берутся из стромы.

Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав ФС II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Комплекс находится со стороны внутритилакоидного пространства и полученные 4 протона выбрасываются в него.

Таким образом, суммарный результат работы ФС II - это окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве и 2 восстановленных пластохинонов в мембране.

Фотосинтетическое фосфорилирование. Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала. Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса.

Фотосинтетическое фосфорилирование - синтез АТФ из АДФ и неорганического фосфора в хлоропластах, сопряженный с транспортом электронов, индуцируемым светом.

Соответственно двум типам потока электронов различают циклическое и нециклическое фотофосфорилирование.

Перенос электронов по цепи циклического потока сопряжен с синтезом двух макроэргичесих связей АТФ. Вся энергия света, поглощенная пигментом реакционного центра фотосистемы I, расходуется только на синтез АТФ. При циклическом Ф. ф. не образуются восстановительные эквиваленты для углеродного цикла и не выделяется O2. Циклическое Ф. ф. описывается уравнением:

Нециклическое Ф. ф. сопряжено с потоком электронов от воды через переносчики фотосистем I и II НАДФ +. Энергия света в этом процессе запасается в макроэргических связях АТФ, восстановленной форме НАДФН2 и молекулярном кислороде. Суммарное уравнение нециклического Ф. ф. следующее:

Механизм сопряжения электронного транспорта с формированием трансмембранного градиента электрохимического потенциала

Хемиосмотическая теория. Переносчики электронов локализованы в мембранах асимметрично. При этом последовательно чередуются переносчики электронов (цитохромы) с переносчиками электрона и протона (пластохиноны). Молекула пластохинона сначала принимает два электрона: ПХ + 2е - -> ПХ -2 .

Пластохинон - производное хинона, в полностью окисленном состоянии содержит два атома кислорода, соединенных с углеродным кольцом двойными связями. В полностью восстановленном состоянии атомы кислорода в бензольном кольце соединяются с протонами: с образованием электрически нейтральной формы: ПХ -2 + 2Н + -> ПХН 2 . Протоны выделяются в пространство внутри тилакоида. Таким образом, при переносе пары электронов от Хл 680 на Хл 700 во внутреннем пространстве тилакоидов накапливаются протоны. В результате активного переноса протонов из стромы во внутритилакоидное пространство на мембране создается электрохимический потенциал водорода (ΔμН +), имеющий две составляющие: химическую ΔμН (концентрационную), возникающую в результате неравномерного распределения ионов Н + по разным сторонам мембраны, и электрическую, обусловленную противоположным зарядом разных сторон мембраны (благодаря накоплению протонов с внутренней стороны мембраны).

__________________________________________________________________________

Структурно-функциональная организация и механизм работы АТФ-синтетазного комплекса

Структурно-функциональная организация. Сопряжение диффузии протонов через мембрану осуществляется макромолекулярным ферментным комплексом, называемым АТФ-синтазой или сопрягающим фактором . Этот комплекс по форме напоминает гриб и состоит из двух частей - факторов сопряжения: круглой шляпки F 1 , выступающей с наружной стороны мембраны (в ней располагается каталитический центр фермента), и ножки погруженной в мембрану. Мембранная часть состоит из полипептидных субъединиц и формирует в мембране протонный канал, по которому ионы водорода попадают к фактору сопряжения F 1 . Белок F 1 представляет белковый комплекс, который состоит из мембраны, при этом он сохраняет способность катализировать гидролиз АТФ. Изолированный F 1 не способен синтезировать АТФ. Способность синтезировать АТФ - это свойство единого комплекса F 0 -F 1 , встроенного в мембрану. Связано это с тем, что работа АТФ-синтазы при синтезе АТФ сопряжена с переносом через нее протонов. Направленный транспорт протонов возможен только в том случае, если АТФ-синтаза встроена в мембрану.

Механизм работы. Существуют две гипотезы относительно механизма фосфорилирования (прямой механизм и косвенный). Согласно первой гипотезе фосфатная группа и АДФ связываются с ферментом в активном участке комплекса F1. Два протона перемещаются через канал по градиенту концентрации и соединяются с кислородом фосфата, образуя воду. Согласно второй гипотезе, (косвенный механизм), АДФ и неорганический фосфор соединяются в активном центре фермента спонтанно. Однако образовавшаяся АТФ прочно связана с ферментом, и для ее освобождения требуется энергия. Энергия доставляется протонами, которые, связываясь с ферментом, изменяют его конформацию, после чего АТФ высвобождается.

С4 путь фотосинтеза

С 4 -путь фотосинтеза или цикл Хетча-Слэка

Австралийскими учеными М. Хетчем и К. Слэком был описан С 4 -путь фотосинтеза, характерный для тропических и субтропических растений однодольных и двудольных 16 семейств (сахарный тростник, кукуруза и др.). Большинство самых злостных сорняков – С4 растения, а большинство сельскохозяйственных культур относятся к С3-растениям. Листья этих растений содержат хлоропласты двух типов: обычные в клетках мезофилла и крупные хлоропласты, не имеющие гран и фотосистемы II, в клетках обкладки, окружающих проводящие пучки.

В цитоплазме клеток мезофилла фосфоэнолпируваткарбоксилаза присоединяет СО 2 к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она транспортируется в хлоропласты, где восстанавливается до яблочной кислоты при участии НАДФН (фермент НАДФ+-зависимая малатдегидрогеназа). В присутствии ионов аммония щавелевоуксусная кислота превращается в аспарагиновую кислоту (фермент - аспартатаминотрансфераза). Яблочная и (или) аспарагиновая кислоты переходят в хлоропласты клеток обкладки, декарбоксилируются до пировиноградной кислоты и СО 2 . СО 2 включается в цикл Кальвина, а пировиноградная кислота переносится в клетки мезофилла, где превращается в фосфоэнолпировиноградную кислоту.

В зависимости от того, какая кислота – малат или аспартат – транспортируется в клетки обкладки, растения делят на два типа: малатный и аспартатный. В клетках обкладки эти С4-кислоты декарбоксилируются, что происходит у разных растений происходит с участием различных ферментов: НАДФ+-зависимой малатдегидрогеназы декарбоксилирующей (НАДФ+-МДГ), НАД+-зависимой малатдегидрогеназы декарбоксилирующей (малик-энзим, НАД+-МДГ) и ФЭП-карбоксикиназы (ФЕП-КК). Поэтому растения делят еще на три подтипа: НАДФ+-МДГ-растения, НАД+-МДГ-растения ФЕП-КК-растения.

Такой механизм позволяет растениям фотосинтезировать при закрытых из-за высокой температуры устьицах. Кроме того, продукты цикла Кальвина образуются в хлоропластах клеток обкладки, окружающих проводящие пучки. Это способствует быстрому оттоку фотоассимилятов и тем самым повышает интенсивность фотосинтеза.

Фотосинтез по типу толстянковых (суккулентов)-САМ путь.

В сухих местах существуют растения-суккуленты, у которых устьица открыты ночью и закрыты днем для уменьшения транспирации. В настоящее время этот тип фотосинтеза обнаружен у представителей 25 семейств.

У суккулентов (кактусов и растений сем. толстянковых (Crassulaceae ) процессы фотосинтеза разделены не в пространстве, как у других С 4 -растений, а во времени. Этот тип фотосинтеза получил название CAM (crassulation acid metabolism)-путь. Устьица днем обычно закрыты, что предотвращает потерю воды в ходе транспирации, и открыты ночью. В темноте СО 2 поступает в листья, где фосфоэнолпируваткарбоксилаза присоединяет его к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она восстанавливается НАДФН-зависимой малатдегидрогеназой до яблочной кислоты, которая накапливается в вакуолях. Днем яблочная кислота переходит из вакуоли в цитоплазму, где декарбоксилируется с образованием СО 2 и пировиноградной кислоты. СО 2 диффундирует в хлоропласты и включается в цикл Кальвина.

Итак, темновая фаза фотосинтеза разделена во времени: СО 2 поглощение ночью, а восстанавливается днем, из ЩУК образуется малат, карбоксилирование в тканях происходит дважды: ночью карбоксилируется ФЕП, днем РуБФ.

В САМ-растения делят на два типа: НАДФ-МДГ-растения, ФЕП-КК-растения.

Как С4, САМ-тип является дополнительным, поставляющим СО 2 в С3-цикл у растений, приспособившихся к жизни в условиях повышенных температур или недостатка влаги. У некоторых растений этот цикл функционирует всегда, у других – только в неблагоприятных условиях.

Фотодыхание.

Фотодыхание – это активируемый светом процесс выделения СО 2 и поглощения О 2 .(НИ К ФОТОСИНТЕЗУ,НИ К ДЫХАНИЮ НЕ ОТНОСИТСЯ). Так как первичным продуктом фотодыхания является гликолевая кислота, оно еще называется гликолатным путем. Фотодыхание усиливается при низком содержании СО 2 и высокой концентрации О 2 в воздухе. В этих условиях рибулозобисфаткарбоксилаза хлоропластов катализирует не карбоксилирование рибулозо-1,5-дифосфата, а его расщепление на 3-фосфоглицериновую и 2-фосфогликолевую кислоты. Последняя дефосфорилируется с образованием гликолевой кислоты.

Гликолевая кислота из хлоропласта переходит в пероксисому, где окисляется гликолатоксидазой до глиоксиловой кислоты. Образующаяся при этом перекись водорода разлагается каталазой, присутствующей в пероксисоме. Глиоксиловая кислота аминируется, превращаясь в глицин. Глицин транспортируется в митохондрию, где из двух молекул глицина синтезируется серин и освобождается СО 2 .

Серин может поступать в пероксисому и под действием аминотрансферазы передает аминогруппу на пировиноградную кислоту с образованием аланина, а сам превращается в гидроксипировиноградную кислоту. Последняя при участии НАДФН восстанавливается в глицериновую кислоту. Она переходит в хлоропласты, где включается в цикл Кальвина и образуется 3 ФГА.

Дыхание растений

Живая клетка представляет собой открытую энергетическую систему, она живёт и сохраняет свою индивидуальность за счет постоянного притока энергии. Как только этот приток прекращается, наступает дезорганизация и смерть организма. Энергия солнечного света, запасенная при фотосинтезе в органическом веществе, вновь высвобождается и используется на самые различные процессы жизнедеятельности.

В природе существуют два основных процесса, в ходе которых энергия солнечного света, запасенная в органическом веществе, высвобождается,- это дыхание и брожение. Дыхание - это аэробный окислительный распад органических соединений на простые неорганические, сопровождаемый выделением энергии. Брожение - анаэробный процесс распада органических соединений на более простые, сопровождаемый выделением энергии. В случае дыхания акцептором электрона служит кислород, в случае брожения - органические соединения.

Суммарное уравнение процесса дыхания:

С6Н1206 + 602 -> 6С02 + 6Н20 + 2824 кДж.

Пути дыхательного обмена

Существуют две основные системы и два основных пути превращения дыхательного субстрата, или окисления углеводов:

1) гликолиз + цикл Кребса (гликолитический); Данный путь дыхательного обмена является наиболее распространенным и, в свою очередь, состоит из двух фаз. Первая фаза - анаэробная (гликолиз), вторая фаза - аэробная. Эти фазы локализованы в различных компартментах клетки. Анаэробная фаза гликолиз - в цитоплазме, аэробная фаза - в митохондриях. Обычно химизм дыхания начинают рассматривать с глюкозы. Вместе с тем в растительных клетках глюкозы мало, поскольку конечными продуктами фотосинтеза являются сахароза как основная транспортная форма сахара в растении или запасные углеводы (крахмал и др.). Поэтому, чтобы стать субстратом дыхания сахароза и крахмал должны гидролизоваться с образованием глюкозы.

2) пентозофосфатный (апотомический). Относительная роль этих путей дыхания может меняться в зависимости от типа растений, возраста, фазы развития, а также в зависимости от факторов среды. Процесс дыхания растений осуществляется во всех внешних условиях, при которых возможна жизнь. Растительный организм не имеет приспособлений к регуляции температуры, поэтому процесс дыхания осуществляется при температуре от -50 до +50°С. Нет приспособлений у растений и к поддержанию равномерного распределения кислорода по всем тканям. Именно необходимость осуществления процесса дыхания в разнообразных условиях привела к выработке в процессе эволюции разнообразных путей дыхательного обмена и к еще большему разнообразию ферментных систем, осуществляющих отдельные этапы дыхания. При этом важно отметить взаимосвязь всех процессов обмена в организме. Изменение пути дыхательного обмена приводит к глубоким изменениям во всем метаболизме растений.

Энергитическая

11 АТФ образуется в результате работы ЦК и дыхательной и 1 АТФ в результате субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).

1 оборот ЦК в аэробных условиях приводит к образованию 12 АТФ

Интегративная

На уровне ЦК объединяются пути катаболизма белков жиров и углеводов. цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.

Амфиболическая

Метаболиты ЦК являются ключевыми на их уровне могут идти переключение с одного вида обмена на другой.

13.ЭТЦ: Компоненты локализация. Механизм окислительного фосфорилирования. Хемиосмотическая теория Митчела.

Электрон-транспортная цепь - это цепь редокс-агентов, определенным образом расположенных в мембране хлоропластов, осуществляющих фотоиндуцируемый транспорт электронов от воды к НАДФ + . Движу­щей силой транспорта электронов по ЭТЦ фотосинтеза являются окислитель­но-восстановительные реакции в реакционных центрах (РЦ) двух фотосистем (ФС). Первичное разделение зарядов в РЦ ФС1 приводит к образованию сильного восстановителя А0, окислительно-восстановительный потенциал кото­рого обеспечивает восстановление НАДФ + через цепь промежуточных пере­носчиков. В РЦ ФС2 фотохимические реакции ведут к образованию сильного окислителя П680, который вызывает ряд окислительно-восстановительных ре­акций, приводящих к окислению воды и выделению кислорода. Восстановле­ние П700, образованного в РЦ ФС1, происходит за счет электронов, мобили­зованных из воды фотосистемой II, при участии промежуточных переносчи­ков электронов (пластохинонов, редокс-кофакторов цитохромного комплекса и пластоцианина). В отличие от первичных фотоиндуцированных реакций раз­деления зарядов в реакционных центрах, идущих против термодинамического градиента, перенос электрона на других участках ЭТЦ идет по градиенту окис­лительно-восстановительного потенциала и сопровождается высвобождением энергии, которая используется на синтез АТФ.

компоненты ЭТЦ митохондрий расположены в следующем порядке:

Пара электронов от НАДH или сукцината передается по ЭТЦ до кислорода, который, восстанавливаясь и присоединяя два протона, образует воду.

Определение и общая характеристика фотосинтеза, значение фотосинтеза

ФОТОСИНТЕЗ – это процесс образования органических веществ из CO2 и H2O на свету, при участии фотосинтетических пигментов.

С биохимической точки зрения, фотосинтез – это окислительно-восстановительный процесс превращения устойчивых молекул неорганических веществ СО2 и Н2О в молекулы органических веществ – углеводы .

Общая характеристика

6CO 2 + 6H 2 O → C 6 H 12 O 6 + O 2

Процесс фотосинтеза состоит из двух фаз и нескольких этапов, которые идут последовательно.

I Световая фаза

1. Фотофизический этап – происходит во внутренней мембране хлоропластов и связан с поглощением солнечной энергии пигментными системами.

2. Фотохимический этап – проходит во внутренней мембране хлоропластов и связан с преобразованием солнечной энергии в химическую энергию АТФ и НАДФН2 и фотолизом воды.

II Темновая фаза

3. Биохимический этап или цикл Кальвина – проходит в строме хлоропластов. На этом этапе углекислый газ восстанавливается до углеводов.

ЗНАЧЕНИЕ

1. Обеспечение постоянства СО2 в воздухе. Связывание СО 2 в ходе фотосинтеза в значительной мере компенсирует его выделение в результате других процессов (дыхание, брожение, деятельность вулканов, производственная деятельность человечества).

2. Препятствует развитию парникового эффекта. Часть солнечного света отражается от поверхности Земли в виде тепловых инфракрасных лучей. СО 2 поглощает инфракрасное излучение и тем самым сохраняет тепло на Земле. Повышение содержания СО 2 в атмосфере может способствовать увеличению температуры, то есть создавать парниковый эффект. Однако высокое содержание СО 2 в воздухе активирует фотосинтез и, следовательно, концентрация СО 2 в воздухе опять уменьшится.

3. Накопление кислорода в атмосфере. Первоначально в атмосфере Земли кислорода было очень мало. Сейчас его содержание составляет 21 % по объему воздуха. В основном, этот кислород является продуктом фотосинтеза.

4. Озоновый экран. Озон (О 3) образуется в результате фотодиссоциации молекул кислорода под действием солнечной радиации на высоте около 25 км. Защищает всё живое на Земле от губительных лучей.

В соответствии с этим выделяют хлорофилльный и бесхлорофилльный фотосинтез.

Бесхлорофилльный фотосинтез

Система бесхлорофилльного фотосинтеза отличается значительной простотой организации, в связи с чем предполагается эволюционно первичным механизмом запасания энергии электромагнитного излучения. Эффективность бесхлорофилльного фотосинтеза как механизма преобразования энергии сравнительно низка (на один поглощённый квант переносится лишь один H +).

Открытие у галофильных архей

Dieter Oesterhelt и Walther Stoeckenius идентифицировали в «пурпурных мембранах» представителя галофильных архей Halobacterium salinarium (прежнее название Н. halobium ) белок, который позже был назван бактериородопсином . В скором времени были накоплены факты, указывающие на то, что бактериородопсин является светозависимым генератором протонного градиента . В частности, было продемонстрировано фотофосфорилирование на искусственных везикулах , содержащих бактериородопсин и митохондриальную АТФ-синтазу, фотофосфорилирование в интактных клетках H. salinarium , светоиндуцируемое падение pH среды и подавление дыхания, причем все эти эффекты коррелировали со спектром поглощения бактериородопсина. Таким образом, были получены неопровержимые доказательства существования бесхлорофилльного фотосинтеза.

Механизм

Фотосинтетический аппарат экстремальных галобактерий является наиболее примитивным из ныне известных; в нём отсутствует электронтранспортная цепь . Цитоплазматическая мембрана галобактерий является сопрягающей мембраной, содержащей два основных компонента: светозависимую протонную помпу (бактериородопсин) и АТФ-синтазу . Работа такого фотосинтетического аппарата основана на следующих трансформациях энергии:

  1. Хромофор бактериородопсина ретиналь поглощает кванты света, что приводит к конформационным изменениям в структуре бактериородопсина и транспорту протона из цитоплазмы в периплазматическое пространство. Кроме того, дополнительный вклад в электрическую составляющую градиента вносит активный светозависимый импорт хлорид-аниона, который обеспечивает галородопсин [ ] . Таким образом, в результате работы бактериородопсина энергия солнечного излучения трансформируется в энергию электрохимического градиента протонов на мембране.
  2. При работе АТФ-синтазы энергия трансмембранного градиента трансформируется в энергию химических связей АТФ. Таким образом, осуществляется хемиосмотическое сопряжение.

При бесхлорофилльном типе фотосинтеза (как и при реализации циклических потоков в электрон-транспортных цепях) не происходит образования восстановительных эквивалентов (восстановленного ферредоксина или НАД(Ф)Н), необходимых для ассимиляции углекислого газа. Поэтому при бесхлорофилльном фотосинтезе не происходит ассимиляции углекислого газа, а осуществляется исключительно запасание солнечной энергии в форме АТФ (фотофосфорилирование).

Значение

Основной путь получения энергии для галобактерий - аэробное окисление органических соединений (при культивировании используют углеводы и аминокислоты). При дефиците кислорода помимо бесхлорофилльного фотосинтеза источниками энергии для галобактерий может служить анаэробное нитратное дыхание или сбраживание аргинина и цитруллина . Однако в эксперименте было показано, что бесхлорофилльный фотосинтез может служить и единственным источником энергии в анаэробных условиях при подавлении анаэробного дыхания и брожения при обязательном условии, что в среду вносят ретиналь, для синтеза которого необходим кислород.

Хлорофилльный фотосинтез

Хлорофилльный фотосинтез отличается от бактериородопсинового значительно большей эффективностью запасания энергии. На каждый поглощённый квант излучения против градиента переносится не менее одного H + , и в некоторых случаях энергия запасается в форме восстановленных соединений (ферредоксин, НАДФ).

Аноксигенный

Аноксигенный (или бескислородный) фотосинтез протекает без выделения кислорода. К аноксигенному фотосинтезу способны пурпурные и зелёные бактерии , а также гелиобактерии .

При аноксигенном фотосинтезе возможно осуществление:

  1. Светозависимого циклического транспорта электронов, не сопровождающегося образованием восстановительных эквивалентов и приводящего исключительно к запасанию энергии света в форме АТФ . При циклическом светозависимом электронном транспорте необходимости в экзогенных донорах электронов не возникает. Потребность в восстановительных эквивалентах обеспечивается нефотохимическим путём, как правило, за счёт экзогенных органических соединений.
  2. Светозависимого нециклического транспорта электронов, сопровождающегося и образованием восстановительных эквивалентов, и синтезом АДФ. При этом возникает потребность в экзогенных донорах электронов , которые необходимы для заполнения электронной вакансии в реакционном центре. В качестве экзогенных доноров электронов могут использоваться как органические, так и неорганические восстановители. Среди неорганических соединений наиболее часто используются различные восстановленные формы серы (сероводород , молекулярная сера , сульфиты , тиосульфаты , тетратионаты , тиогликоляты), также возможно использование молекулярного водорода .

Оксигенный

Оксигенный (или кислородный) фотосинтез сопровождается выделением кислорода в качестве побочного продукта. При оксигенном фотосинтезе осуществляется нециклический электронный транспорт, хотя при определенных физиологических условиях осуществляется исключительно циклический электронный транспорт. В качестве донора электронов при нециклическом потоке используется крайне слабый донор электронов - вода .

Оксигенный фотосинтез распространён гораздо шире. Характерен для высших растений , водорослей , многих протистов и цианобактерий .

Этапы

Фотосинтез - процесс с крайне сложной пространственно-временной организацией.

Разброс характерных времен различных этапов фотосинтеза составляет 19 порядков: скорость процессов поглощения квантов света и миграции энергии измеряется в фемтосекундном интервале (10 −15 с), скорость электронного транспорта имеет характерные времена 10 −10 −10 −2 с, а процессы, связанные с ростом растений, измеряются днями (10 5 −10 7 с).

Также большой разброс размеров характерен для структур, обеспечивающих протекание фотосинтеза: от молекулярного уровня (10 −27 м 3) до уровня фитоценозов (10 5 м 3).

В фотосинтезе можно выделить отдельные этапы, различающиеся по природе и характерным скоростям процессов:

  • Фотофизический;
  • Фотохимический;
  • Химический:
    • Реакции транспорта электронов;
    • «Темновые» реакции или циклы углерода при фотосинтезе.

На первом этапе происходит поглощение квантов света пигментами , их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы. На втором этапе происходит разделение зарядов в реакционном центре, перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НАДФН . Первые два этапа вместе называют светозависимой стадией фотосинтеза . Третий этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии. Чаще всего в качестве таких реакций рассматривается цикл Кальвина и глюконеогенез , образование сахаров и крахмала из углекислого газа воздуха.

Пространственная локализация

Лист

Фотосинтез растений осуществляется в хлоропластах - полуавтономных двухмембранных органеллах , относящихся к классу пластид . Хлоропласты могут содержаться в клетках стеблей , плодов , чашелистиков , однако основным органом фотосинтеза является лист . Он анатомически приспособлен к поглощению энергии света и ассимиляции углекислоты . Плоская форма листа, обеспечивающая большое отношение поверхности к объёму, позволяет более полно использовать энергию солнечного света. Вода, необходимая для поддержания тургора и протекания фотосинтеза, доставляется к листьям из корневой системы по ксилеме - одной из проводящих тканей растения. Потеря воды в результате испарения через устьица и в меньшей степени через кутикулу (транспирация) служит движущей силой транспорта по сосудам. Однако избыточная транспирация является нежелательной, и у растений в ходе эволюции сформировались различные приспособления, направленные на снижение потерь воды. Отток ассимилятов , необходимый для функционирования цикла Кальвина , осуществляется по флоэме . При интенсивном фотосинтезе углеводы могут полимеризоваться, и при этом в хлоропластах формируются крахмальные зёрна. Газообмен (поступление углекислого газа и выделение кислорода) осуществляется путём диффузии через устьица (некоторая часть газов движется через кутикулу).

Поскольку дефицит углекислого газа значительно увеличивает потери ассимилятов при фотодыхании , необходимо поддерживать высокую концентрацию углекислоты в межклеточном пространстве, что возможно при открытых устьицах . Однако поддержание устьиц в открытом состоянии при высокой температуре приводит к усилению испарения воды, что приводит к водному дефициту и также снижает продуктивность фотосинтеза. Этот конфликт решается в соответствии с принципом адаптивного компромисса. Кроме того, первичное поглощения углекислого газа ночью, при низкой температуре, у растений с CAM-фотосинтезом позволяет избежать высоких транспирационных потерь воды.

Фотосинтез на тканевом уровне

На тканевом уровне фотосинтез у высших растений обеспечивается специализированной тканью - хлоренхимой . Она располагается близ поверхности тела растения, где получает достаточно световой энергии. Обычно хлоренхима находится непосредственно под эпидермой . У растений, растущих в условиях повышенной инсоляции, между эпидермой и хлоренхимой может располагаться один или два слоя прозрачных клеток (гиподерма), обеспечивающих рассеивание света. У некоторых тенелюбивых растений хлоропластами богата и эпидерма (например, кислица). Часто хлоренхима мезофилла листа дифференцирована на палисадную (столбчатую) и губчатую, но может состоять и из однородных клеток. В случае дифференцировки наиболее богата хлоропластами палисадная хлоренхима.

Хлоропласты

Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые, соединяясь друг с другом, образуют тилакоиды , которые, в свою очередь, группируются в стопки, называемые гранами . Внутритилакоидное пространство отделено и не сообщается с остальной стромой; предполагается также, что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO 2 происходит в строме.

В хлоропластах имеются свои ДНК , РНК , рибосомы (типа 70s), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза .

Фотосинтетические мембраны прокариот

Фотохимическая суть процесса

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П 700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин , который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f-комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П 700 .

Циклический и псевдоциклический транспорт электрона

Помимо полного нециклического пути электрона, описанного выше, обнаружены циклический и псевдоциклический.

Суть циклического пути заключается в том, что ферредоксин вместо НАДФ восстанавливает пластохинон, который переносит его назад на b 6 f-комплекс. В результате образуется больший протонный градиент и больше АТФ, но не возникает НАДФН.

При псевдоциклическом пути ферредоксин восстанавливает кислород, который в дальнейшем превращается в воду и может быть использован в фотосистеме II. При этом также не образуется НАДФН.

Темновая фаза

В темновой стадии с участием АТФ и НАДФ происходит восстановление CO 2 до глюкозы (C 6 H 12 O 6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

С 3 -фотосинтез, цикл Кальвина

Во второй стадии ФГК в два этапа восстанавливается. Сначала она фосфорилируется АТФ под действием фосфороглицерокиназы с образованием 1,3-дифосфоглицериновой кислоты (ДФГК), затем при воздействии триозофосфатдегидрогеназы и НАДФН ацил-фосфатная группа ДФГК дефосфорилируется и восстанавливается до альдегидной и образуется глицеральдегид-3-фосфат - фосфорилированный углевод (ФГА).

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.

Наконец, две ФГА необходимы для синтеза глюкозы . Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO 2 , 12 НАДФН и 18 АТФ.

С 4 -фотосинтез

Отличие этого механизма фотосинтеза от обычного заключается в том, что фиксация углекислого газа и его использование разделены в пространстве, между различными клетками растения .

При низкой концентрации растворённого в строме CO 2 рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания .

Для увеличения концентрации CO 2 растения С 4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты , которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата , возвращаемого в клетки мезофилла.

С 4 -фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO 2 в лист, а также при рудеральной жизненной стратегии.

Фотосинтез по пути С4 проводят около 7600 видов растений. Все они относятся к цветковым : многие Злаковые (61 % видов, в том числе культурные - кукуруза, сахарный тростник и сорго и др. ), Гвоздичноцветные (наибольшая доля в семействах Маревые - 40 % видов, Амарантовые - 25 %), некоторые Осоковые , Астровые , Капустные , Молочайные .

CAM-фотосинтез

Возникновение на Земле более 3 млрд лет назад механизма расщепления молекулы воды квантами солнечного света с образованием O 2 представляет собой важнейшее событие в биологической эволюции, сделавшее свет Солнца главным источником энергии биосферы.

Энергия, получаемая человечеством при сжигании ископаемого топлива (уголь , нефть , природный газ , торф), также является запасённой в процессе фотосинтеза.

Фотосинтез служит главным входом неорганического углерода в биогеохимический цикл .

Фотосинтез является основой продуктивности сельско-хозяйственно важных растений.

Большая часть свободного кислорода атмосферы - биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя , позволило жизни существовать на суше.

История изучения

Первые опыты по изучению фотосинтеза были проведены Джозефом Пристли в -1780-х годах, когда он обратил внимание на «порчу» воздуха в герметичном сосуде горящей свечой (воздух переставал поддерживать горение, а помещённые в него животные задыхались) и «исправление» его растениями. Пристли сделал вывод, что растения выделяют кислород, который необходим для дыхания и горения, однако не заметил, что для этого растениям нужен свет. Это показал вскоре Ян Ингенхауз .

Позже было установлено, что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В г. Роберт Майер на основании закона сохранения энергии постулировал, что растения преобразуют энергию солнечного света в энергию химических связей. В г. В. Пфеффер назвал этот процесс фотосинтезом.

Хлорофиллы были впервые выделены в г. П. Ж. Пельтье и Ж. Каванту . Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии . Спектры поглощения хлорофилла были изучены К. А. Тимирязевым , он же, развивая положения Майера, показал, что именно поглощённые лучи позволяют повысить энергию системы, создав вместо слабых связей С-О и О-Н высокоэнергетические С-С (до этого считалось что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO 2: в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось, что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.

Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль , он же в 1931 году доказал, что пурпурные бактерии и зелёные серобактерии осуществляют аноксигенный фотосинтез . Окислительно-восстановительный характер фотосинтеза означал, что кислород в оксигенном фотосинтезе образуется полностью из воды, что экспериментально подтвердил в г. А. П. Виноградов в опытах с изотопной меткой. В г. Роберт Хилл установил, что процесс окисления воды (и выделения кислорода), а также ассимиляции CO 2 можно разобщить. В - гг. Д. Арнон установил механизм световых стадий фотосинтеза, а сущность процесса ассимиляции CO 2 была раскрыта Мелвином Кальвином с использованием изотопов углерода в конце



 

Возможно, будет полезно почитать: