Что такое система привести примеры. Что такое система

  • Интерактивная доска;
  • MS PowerPoint

Ход урока:

I.Организационный момент (2 мин.)

II. Актуализация знаний (3 мин.)

Проверка домашнего задания.

III. Теоретическая часть (30 мин.)

Системология — наука о системах. В чем состоит содержание этой науки и какое отношение она имеет к информатике, вам предстоит узнать из данной главы.

Понятие системы

Наш мир наполнен многообразием различных объектов. Нередко мы употребляем понятия «простой объект», «сложный объект». А размышляли ли вы о том, в чем разница между простым и сложным? На первый взгляд, возникает такой очевидный ответ: сложный объект состоит из множества простых. И чем больше в нем таких «деталей», тем предмет сложнее. Например, кирпич — простой объект, а здание, построенное из кирпичей, — сложный объект. Или еще: болт, колесо, руль и другие детали автомобиля — простые объекты, а сам автомобиль, собранный из этих деталей, — сложное устройство. Но только ли в количестве деталей заключается различие между простым и сложным?

Сформулируем определение главного понятия системологии — понятия системы:

Система — это сложный объект, состоящий из взаимосвязанных частей (элементов) и существующий как единое целое. Всякая система имеет определенное назначение (функцию, цель).

Рассмотрим кучу кирпичей и дом, построенный из этих кирпичей. Как бы много ни было кирпичей в куче, ее нельзя назвать системой, потому что в ней нет единства, нет целесообразности. А жилой дом имеет вполне конкретное назначение — в нем можно жить. В кладке дома кирпичи определенным образом взаимосвязаны, в соответствии с конструкцией. Конечно, в конструкции дома кроме кирпичей имеется много других деталей (доски, балки, окна и пр.), все они нужным образом соединены и образуют единое целое — дом.

Вот другой пример: множество велосипедных деталей и собранный из них велосипед. Велосипед — это система. Его назначение — быть транспортным средством для человека.

— целесообразность. Это назначение системы, главная функция, которую она выполняет.

Структура системы

Всякая система определяется не только составом своих частей, но также порядком и способом объединения этих частей в единое целое. Все части (элементы) системы находятся в определенных отношениях или связях друг с другом. Здесь мы выходим на следующее важнейшее понятие системологии — понятие структуры.

Структура — это порядок связей между элементами системы.

Можно еще сказать так: структура — это внутренняя организация системы. Из тех же самых кирпичей и других деталей кроме жилого дома можно построить гараж, забор, башню. Все эти сооружения строятся из одних и тех же элементов, но имеют разную конструкцию в соответствии с назначением сооружения. Применяя язык системологии, можно сказать, что они различаются структурой.

Кто из вас не увлекался детскими конструкторами: строительными, электрическими, радиотехническими и другими? Все детские конструкторы устроены по одному принципу: имеется множество типовых деталей, из которых можно собирать различные изделия. Эти изделия отличаются порядком соединения деталей, т. е. структурой.

Из всего сказанного можно сделать вывод: всякая система обладает определенным элементным составом и структурой. Свойства системы зависят и от состава, и от структуры. Даже при одинаковом составе системы с разной структурой обладают разными свойствами, могут иметь разное назначение.

— целостность. Нарушение элементного состава или структуры ведет к частичной или полной утрате целесообразности системы.

С зависимостью свойств различных систем от их структуры вам приходилось и еще предстоит встретиться в разных школьных дисциплинах. Например, известно, что графит и алмаз состоят из молекул одного и того же химического вещества — углерода. Но в алмазе молекулы углерода образуют кристаллическую структуру, а у графита структура совсем другая — слоистая. В результате алмаз — самое твердое в природе вещество, а графит мягкий, из него делают грифели для карандашей.

Рассмотрим пример общественной системы. Общественными системами называют различные объединения (коллективы) людей: семью, производственный коллектив, коллектив школы, бригаду, воинскую часть и др. Связи в таких системах — это отношения между людьми, например отношения подчиненности. Множество таких связей образуют структуру общественной системы.

Вот простой пример. Имеются две строительные бригады, состоящие каждая из семи человек. В первой бригаде один бригадир, два его заместителя и по два рабочих в подчинении у каждого заместителя. Во второй бригаде — один бригадир и шестеро рабочих, которые подчиняются непосредственно бригадиру.

На рисунках схематически представлены структуры подчиненности в двух данных бригадах:

Таким образом, две эти бригады — пример двух производственных (социальных) систем с одинаковым составом (по 7 человек), но с разной структурой подчиненности.

Различие в структуре неизбежно отразится на эффективности работы бригад, на их производительности. При небольшом числе людей эффективнее оказывается вторая структура. Но если в бригаде 20 или 30 человек, то тогда одному бригадиру трудно управлять работой такого коллектива. В этом случае разумно ввести должности заместителей, т. е. использовать первую структуру подчиненности.

Системный эффект

Сущность системного эффекта : всякой системе свойственны новые качества, не присущие ее составным частям.

Это же свойство выражается фразой: целое больше суммы своих частей. Например, отдельные детали велосипеда: рама, руль, колеса, педали, сиденье не обладают способностью к езде. Но вот эти детали соединили определенным образом, создав систему под названием «велосипед», которая приобрела новое качество — способность к езде, т. е. возможность служить транспортным средством. То же самое можно показать на примере самолета: ни одна часть самолета в отдельности не обладает способностью летать; но собранный из них самолет (система) — летающее устройство. Еще пример: социальная система — строительная бригада. Один рабочий, владеющий одной специальностью (каменщик, сварщик, плотник, крановщик и пр.), не может построить многоэтажный дом, но вся бригада вместе справляется с этой работой.

О системах и подсистемах

В качестве еще одного примера системы рассмотрим объект — персональный компьютер (ПК). На рисунке приведена схема состава и структуры ПК.

Самое поверхностное описание ПК такое: это система, элементами которой являются системный блок, клавиатура, монитор, принтер, мышь. Можно ли назвать их простыми элементами? Конечно, нет. Каждая из этих частей — это тоже система, состоящая из множества взаимосвязанных элементов. Например, в состав системного блока входят: центральный процессор, оперативная память, накопители на жестких и гибких магнитных дисках, CD-ROM, контроллеры внешних устройств и пр. В свою очередь, каждое из этих устройств — сложная система. Например, центральный процессор состоит из арифметико-логического устройства, устройства управления, регистров. Так можно продолжать и дальше, все более углубляясь в подробности устройства компьютера.

Систему, входящую в состав какой-то другой, более крупной системы, называют подсистемой.

Из данного определения следует, что системный блок является подсистемой персонального компьютера, а процессор - подсистемой системного блока.

А можно ли сказать, что какая-то простейшая деталь компьютера, например гайка, системой не является? Все зависит от точки зрения. В устройстве компьютера гайка — простая деталь, поскольку на более мелкие части она не разбирается. Но с точки зрения строения вещества, из которого сделана гайка, это не так. Металл состоит из молекул, образующих кристаллическую структуру, молекулы — из атомов, атомы — из ядра и электронов. Чем глубже наука проникает в вещество, тем больше убеждается, что нет абсолютно простых объектов. Даже частицы атома, которые называют элементарными, например электроны, тоже оказались непростыми.

Любой реальный объект бесконечно сложен. Описание его состава и структуры всегда носит модельный характер, т. е. является приближенным. Степень подробности такого описания зависит от его назначения. Одна и та же часть системы в одних случаях может рассматриваться как ее простой элемент, в других случаях — как подсистема, имеющая свой состав и структуру.

Основной смысл исследовательской работы ученого чаще всего заключается в поиске системы в предмете его исследования.

Задача всякой науки — найти системные закономерности в тех объектах и процессах, которые она изучает.

В XVI веке Николай Коперник описал устройство Солнечной системы. Земля и другие планеты вращаются вокруг Солнца; связаны они в единое целое силами притяжения.
Систематизация знаний очень важна для биологии. В XVIII веке шведский ученый Карл Линней написал книгу под названием «Системы природы». Он сделал первую удачную попытку классифицировать все известные виды животных и растений, а самое главное, показал взаимосвязь, т. е. зависимость одних видов от других. Вся живая природа предстала
как единая большая система. Но она, в свою очередь, состоит из системы растений, системы животных, т. е. подсистем. А среди животных есть птицы, звери, насекомые и т. д. Всё это тоже системы.

Русский ученый Владимир Иванович Вернадский в 20-х годах XX века создал учение о биосфере. Под биосферой он понимал систему, включающую в себя весь растительный и животный мир Земли, человечество, а также их среду обитания: атмосферу, поверхность Земли, мировой океан, разрабатываемые человеком недра (все это названо активной оболочкой Земли). Все подсистемы биосферы связаны между собой и зависят друг от друга. Вернадскому же принадлежит идея о зависимости состояния биосферы от космических процессов, иначе говоря, биосфера является подсистемой более крупных, космических систем.

, к любой работе проявлять системный подход.

Сущность системного подхода : необходимо учитывать все существенные системные связи того объекта, с которым работаешь.

Очень «чувствительным» для всех нас примером необходимости системного подхода является работа врача. Взявшись лечить какую-то болезнь, какой-то орган, врач не должен забывать о взаимосвязи этого органа со всем организмом человека, чтобы не получилось, как в поговорке, «одно лечим, другое калечим». Человеческий организм — очень сложная система, поэтому от врача требуются большие знания и осторожность.

Еще один пример — экология. Слово «экология» происходит от греческих слов «экое» — «дом» и «логос» — «учение». Эта наука учит людей относиться к окружающей их природе как к собственному дому. Самой важной задачей экологии сегодня стала защита природы от разрушительных последствий человеческой деятельности (использования природных ресурсов, выбросов промышленных отходов и пр.). Со временем люди все больше вмешиваются в природные процессы. Некоторые вмешательства неопасны, но есть такие, которые могут привести к катастрофе. Экология пользуется понятием «экологическая система». Это человек с «плодами» его деятельности (города, транспорт, заводы и пр.) и естественная природа. В идеале в этой системе должно существовать динамическое равновесие, т. е. те разрушения, которые человек неизбежно производит в природе, должны успевать компенсироваться естественными природными процессами или самим человеком. Например, люди, машины, заводы сжигают кислород, а растения его выделяют. Для равновесия надо, чтобы выделялось
кислорода не меньше, чем его сжигается. И если равновесие будет нарушено, то в конце концов наступит катастрофа в масштабах Земли.

В XX веке экологическая катастрофа произошла с Аральским морем в Средней Азии. Люди бездумно забирали для орошения полей воду из питающих его рек Амударья и Сырдарья. Количество испаряющейся воды превысило приток, и море стало пересыхать. Сейчас оно практически погибло и жизнь на его бывших берегах ни для людей, ни для животных и растений стала невозможной. Вот вам пример отсутствия системного подхода. Деятельность таких «преобразователей природы» очень опасна. В последнее время появилось понятие «экологическая грамотность». Вмешиваясь в природу, нельзя быть узким специалистом: только нефтяником, только химиком и пр.

IV

· стр. 32 №9, 10

V . Итог урока (2 мин.)

VI . Домашнее задание (3 мин.)

§5; стр. 32 №4-8.

Просмотр содержимого документа
«Урок № 9»

Тема: Что такое система?

Тип урока: урок ознакомления с новым материалом

Цели:

    Познакомить учащихся с понятиями: система, системология, структура, подсистема, системном подходе;

    Рассмотреть системный эффект, системы и подсистемы, системы в науке и системном подходе;

    Формирование общих представлений современной научной картины мира;

    формирование коммуникативных качеств развивающейся личности.

Оборудование:

    Интерактивная доска;

    MS PowerPoint

Ход урока:

I .Организационный момент (2 мин.)

Приветствие. Сообщение новой темы.

II . Актуализация знаний (3 мин.)

Проверка домашнего задания.

III . Теоретическая часть (30 мин.)

Системология - наука о системах. В чем состоит содержание этой науки и какое отношение она имеет к информатике, вам предстоит узнать из данной главы.

Понятие системы

Наш мир наполнен многообразием различных объектов. Нередко мы употребляем понятия «простой объект», «сложный объект». А размышляли ли вы о том, в чем разница между простым и сложным? На первый взгляд, возникает такой очевидный ответ: сложный объект состоит из множества простых. И чем больше в нем таких «деталей», тем предмет сложнее. Например, кирпич - простой объект, а здание, построенное из кирпичей, - сложный объект. Или еще: болт, колесо, руль и другие детали автомобиля - простые объекты, а сам автомобиль, собранный из этих деталей, - сложное устройство. Но только ли в количестве деталей заключается различие между простым и сложным?

Сформулируем определение главного понятия системологии - понятия системы:

Система - это сложный объект, состоящий из взаимосвязанных частей (элементов) и существующий как единое целое. Всякая система имеет определенное назначение (функцию, цель).

Рассмотрим кучу кирпичей и дом, построенный из этих кирпичей. Как бы много ни было кирпичей в куче, ее нельзя назвать системой, потому что в ней нет единства, нет целесообразности. А жилой дом имеет вполне конкретное назначение - в нем можно жить. В кладке дома кирпичи определенным образом взаимосвязаны, в соответствии с конструкцией. Конечно, в конструкции дома кроме кирпичей имеется много других деталей (доски, балки, окна и пр.), все они нужным образом соединены и образуют единое целое - дом.

Вот другой пример: множество велосипедных деталей и собранный из них велосипед. Велосипед - это система. Его назначение - быть транспортным средством для человека.

Первое главное свойство системы - целесообразность. Это назначение системы, главная функция, которую она выполняет.

Структура системы

Всякая система определяется не только составом своих частей, но также порядком и способом объединения этих частей в единое целое. Все части (элементы) системы находятся в определенных отношениях или связях друг с другом. Здесь мы выходим на следующее важнейшее понятие системологии - понятие структуры.

Структура - это порядок связей между элементами системы.

Можно еще сказать так: структура - это внутренняя организация системы. Из тех же самых кирпичей и других деталей кроме жилого дома можно построить гараж, забор, башню. Все эти сооружения строятся из одних и тех же элементов, но имеют разную конструкцию в соответствии с назначением сооружения. Применяя язык системологии, можно сказать, что они различаются структурой.

Кто из вас не увлекался детскими конструкторами: строительными, электрическими, радиотехническими и другими? Все детские конструкторы устроены по одному принципу: имеется множество типовых деталей, из которых можно собирать различные изделия. Эти изделия отличаются порядком соединения деталей, т. е. структурой.

Из всего сказанного можно сделать вывод: всякая система обладает определенным элементным составом и структурой. Свойства системы зависят и от состава, и от структуры. Даже при одинаковом составе системы с разной структурой обладают разными свойствами, могут иметь разное назначение.

Второе главное свойство системы - целостность. Нарушение элементного состава или структуры ведет к частичной или полной утрате целесообразности системы.

С зависимостью свойств различных систем от их структуры вам приходилось и еще предстоит встретиться в разных школьных дисциплинах. Например, известно, что графит и алмаз состоят из молекул одного и того же химического вещества - углерода. Но в алмазе молекулы углерода образуют кристаллическую структуру, а у графита структура совсем другая - слоистая. В результате алмаз - самое твердое в природе вещество, а графит мягкий, из него делают грифели для карандашей.

Рассмотрим пример общественной системы. Общественными системами называют различные объединения (коллективы) людей: семью, производственный коллектив, коллектив школы, бригаду, воинскую часть и др. Связи в таких системах - это отношения между людьми, например отношения подчиненности. Множество таких связей образуют структуру общественной системы.

Вот простой пример. Имеются две строительные бригады, состоящие каждая из семи человек. В первой бригаде один бригадир, два его заместителя и по два рабочих в подчинении у каждого заместителя. Во второй бригаде - один бригадир и шестеро рабочих, которые подчиняются непосредственно бригадиру.

На рисунках схематически представлены структуры подчиненности в двух данных бригадах:

Таким образом, две эти бригады - пример двух производственных (социальных) систем с одинаковым составом (по 7 человек), но с разной структурой подчиненности.

Различие в структуре неизбежно отразится на эффективности работы бригад, на их производительности. При небольшом числе людей эффективнее оказывается вторая структура. Но если в бригаде 20 или 30 человек, то тогда одному бригадиру трудно управлять работой такого коллектива. В этом случае разумно ввести должности заместителей, т. е. использовать первую структуру подчиненности.

Системный эффект

Сущность системного эффекта : всякой системе свойственны новые качества, не присущие ее составным частям.

Это же свойство выражается фразой: целое больше суммы своих частей. Например, отдельные детали велосипеда: рама, руль, колеса, педали, сиденье не обладают способностью к езде. Но вот эти детали соединили определенным образом, создав систему под названием «велосипед», которая приобрела новое качество - способность к езде, т. е. возможность служить транспортным средством. То же самое можно показать на примере самолета: ни одна часть самолета в отдельности не обладает способностью летать; но собранный из них самолет (система) - летающее устройство. Еще пример: социальная система - строительная бригада. Один рабочий, владеющий одной специальностью (каменщик, сварщик, плотник, крановщик и пр.), не может построить многоэтажный дом, но вся бригада вместе справляется с этой работой.

О системах и подсистемах

В качестве еще одного примера системы рассмотрим объект - персональный компьютер (ПК). На рисунке приведена схема состава и структуры ПК.

Самое поверхностное описание ПК такое: это система, элементами которой являются системный блок, клавиатура, монитор, принтер, мышь. Можно ли назвать их простыми элементами? Конечно, нет. Каждая из этих частей - это тоже система, состоящая из множества взаимосвязанных элементов. Например, в состав системного блока входят: центральный процессор, оперативная память, накопители на жестких и гибких магнитных дисках, CD-ROM, контроллеры внешних устройств и пр. В свою очередь, каждое из этих устройств - сложная система. Например, центральный процессор состоит из арифметико-логического устройства, устройства управления, регистров. Так можно продолжать и дальше, все более углубляясь в подробности устройства компьютера.

подсистемой.

Из данного определения следует, что системный блок является подсистемой персонального компьютера, а процессор - подсистемой системного блока.

А можно ли сказать, что какая-то простейшая деталь компьютера, например гайка, системой не является? Все зависит от точки зрения. В устройстве компьютера гайка - простая деталь, поскольку на более мелкие части она не разбирается. Но с точки зрения строения вещества, из которого сделана гайка, это не так. Металл состоит из молекул, образующих кристаллическую структуру, молекулы - из атомов, атомы - из ядра и электронов. Чем глубже наука проникает в вещество, тем больше убеждается, что нет абсолютно простых объектов. Даже частицы атома, которые называют элементарными, например электроны, тоже оказались непростыми.

Любой реальный объект бесконечно сложен. Описание его состава и структуры всегда носит модельный характер, т. е. является приближенным. Степень подробности такого описания зависит от его назначения. Одна и та же часть системы в одних случаях может рассматриваться как ее простой элемент, в других случаях - как подсистема, имеющая свой состав и структуру.

О системах в науке и системном подходе

Основной смысл исследовательской работы ученого чаще всего заключается в поиске системы в предмете его исследования.

Задача всякой науки - найти системные закономерности в тех объектах и процессах, которые она изучает.

В XVI веке Николай Коперник описал устройство Солнечной системы. Земля и другие планеты вращаются вокруг Солнца; связаны они в единое целое силами притяжения.
Систематизация знаний очень важна для биологии. В XVIII веке шведский ученый Карл Линней написал книгу под названием «Системы природы». Он сделал первую удачную попытку классифицировать все известные виды животных и растений, а самое главное, показал взаимосвязь, т. е. зависимость одних видов от других. Вся живая природа предстала
как единая большая система. Но она, в свою очередь, состоит из системы растений, системы животных, т. е. подсистем. А среди животных есть птицы, звери, насекомые и т. д. Всё это тоже системы.

Русский ученый Владимир Иванович Вернадский в 20-х годах XX века создал учение о биосфере. Под биосферой он понимал систему, включающую в себя весь растительный и животный мир Земли, человечество, а также их среду обитания: атмосферу, поверхность Земли, мировой океан, разрабатываемые человеком недра (все это названо активной оболочкой Земли). Все подсистемы биосферы связаны между собой и зависят друг от друга. Вернадскому же принадлежит идея о зависимости состояния биосферы от космических процессов, иначе говоря, биосфера является подсистемой более крупных, космических систем.

Если человек хочет быть хорошим специалистом в своем деле, он обязательно должен обладать системным мышлением , к любой работе проявлять системный подход.

Сущность системного подхода : необходимо учитывать все существенные системные связи того объекта, с которым работаешь.

Очень «чувствительным» для всех нас примером необходимости системного подхода является работа врача. Взявшись лечить какую-то болезнь, какой-то орган, врач не должен забывать о взаимосвязи этого органа со всем организмом человека, чтобы не получилось, как в поговорке, «одно лечим, другое калечим». Человеческий организм - очень сложная система, поэтому от врача требуются большие знания и осторожность.

Еще один пример - экология. Слово «экология» происходит от греческих слов «экое» - «дом» и «логос» - «учение». Эта наука учит людей относиться к окружающей их природе как к собственному дому. Самой важной задачей экологии сегодня стала защита природы от разрушительных последствий человеческой деятельности (использования природных ресурсов, выбросов промышленных отходов и пр.). Со временем люди все больше вмешиваются в природные процессы. Некоторые вмешательства неопасны, но есть такие, которые могут привести к катастрофе. Экология пользуется понятием «экологическая система». Это человек с «плодами» его деятельности (города, транспорт, заводы и пр.) и естественная природа. В идеале в этой системе должно существовать динамическое равновесие, т. е. те разрушения, которые человек неизбежно производит в природе, должны успевать компенсироваться естественными природными процессами или самим человеком. Например, люди, машины, заводы сжигают кислород, а растения его выделяют. Для равновесия надо, чтобы выделялось
кислорода не меньше, чем его сжигается. И если равновесие будет нарушено, то в конце концов наступит катастрофа в масштабах Земли.

В XX веке экологическая катастрофа произошла с Аральским морем в Средней Азии. Люди бездумно забирали для орошения полей воду из питающих его рек Амударья и Сырдарья. Количество испаряющейся воды превысило приток, и море стало пересыхать. Сейчас оно практически погибло и жизнь на его бывших берегах ни для людей, ни для животных и растений стала невозможной. Вот вам пример отсутствия системного подхода. Деятельность таких «преобразователей природы» очень опасна. В последнее время появилось понятие «экологическая грамотность». Вмешиваясь в природу, нельзя быть узким специалистом: только нефтяником, только химиком и пр.

Занимаясь изучением или преобразованием природы, надо видеть в ней систему и прилагать усилия для того, чтобы не нарушать ее равновесия.

IV . Закрепление знаний (5 мин.)

    стр. 32 №9, 10

V . Итог урока (2 мин.)

Оценивается работа в классе, называются оценки.

VI . Домашнее задание (3 мин.)

§5; стр. 32 №4-8.

Просмотр содержимого презентации
«Что такое система. 10 класс»



Системология - наука о системах.


Примеры

Кирпичный дом –

сложный объект

Кирпич –

простой объект


Пример

Автомобиль –

сложный объект

Автомобильные детали –

простые объекты


Главное понятие системологии – это понятие системы.

Система – это сложный объект, состоящий из взаимосвязанных частей (элементов) и существующий как единое целое.

Всякая система имеет определенное назначение (функцию, цель)


Кирпичный дом.

Назначение – в нем можно жить

Куча кирпичей

Нет единства,

нет целесообразности


Примеры систем и их элементов

Велосипед –

сложный объект (система)

Велосипедные детали –

простые объекты

(элементы системы)


Первое главное свойство системы целесообразность (это назначение системы, главная функция, которую она выполняет).

Назначение велосипеда –

быть транспортным

средством для человека.

Назначение дома –

в нем можно жить.


Структура системы

Второе важнейшее понятие системологии – структура.

Структура – это порядок связей между элементами системы.

Структура – это внутренняя организация системы


Из кирпича можно построить гараж, забор, башню

Имеют разную конструкцию

в соответствии с назначением сооружения, т. е. различаются структурой


Пример

  • Детский конструктор
  • Из одних и тех же деталей можно собрать различные конструкции

Вывод:

  • всякая система обладает определенным элементным составом и структурой.
  • Свойства системы зависят и от состава, и от структуры.
  • Даже при одинаковом составе системы с разной структурой обладают разными свойствами, могут иметь разное назначение.

Второе главное свойство системы целостность. Нарушение элементного состава или структуры ведет к частичной или полной утрате целесообразности системы


Зависимость свойств различных систем от их структуры

Молекула

углерода

Слоистая структура графита

Кристаллическая структура алмаза


Пример общественной системы

Общественными системами называют различные объединения (коллективы) людей: семью, производственный коллектив, коллектив школы, бригаду, воинскую часть и др.

Связи в таких системах - это отношения между людьми, например отношения подчиненности. Множество таких связей образуют структуру общественной системы.


Структуры

подчиненности

в двух бригадах


Системный эффект

Сущность системного эффекта:

Это же свойство выражается фразой: целое больше суммы своих частей

Велосипед –

Устройство передвижения


Системный эффект

Сущность системного эффекта: всякой новой системе свойственны новые качества, не присущие её составным частям.

Самолет –

летающее устройство


Системы и подсистемы

Состав и структура персонального компьютера

Контролеры внешних

устройств

НМЖД

НГМД

Системный блок

Монитор

Информационная магистраль

Принтер

Центральный процессор

Оперативная память

Мышь

Клавиатура

Регистры


Системы и подсистемы

Систему, входящую в состав какой-то другой, более крупной системы, называют подсистемой.


Примеры систем и их элементов

В устройстве

компьютера

С точки зрения

строения вещества

Простая деталь

Подсистема


Вывод:

Любой реальный объект бесконечно сложен. Описание его состава и структуры всегда носит модельный характер, т. е. является приближенным. Степень подробности такого описания зависит от его назначения. Одна и та же часть системы в одних случаях может рассматриваться как ее простой элемент, в других случаях - как подсистема, имеющая свой состав и структуру.


О системах в науке и системном подходе

Основной смысл исследовательской работы

ученого чаще всего заключается в поиске

системы в предмете исследования.

Задача всякой науки – найти системные закономерности в тех объектах и процессах, которые она изучает.


Николай Коперник в XVI веке описал

устройство Солнечной системы


Карл Линней написал книгу «Система природы»

К. Линней сделал первую удачную попытку классифицировать все известные

виды животных и растений и показал зависимость одних видов от других.


Русский ученый В. И. Вернадский в 20-х годах XX века создал учение о биосфере.

Под биосферой он понимал систему , включающую в себя весь растительный и животный мир Земли, человечество, а также их среду обитания: атмосферу, поверхность Земли, мировой океан, разрабатываемые человеком недра.


Если человек хочет быть хорошим специалистом в своем деле, он обязательно должен обладать системным мышлением, к любой работе проявлять системный подход.

Сущность системного подхода: необходимо учитывать все существенные системные связи того объекта, с которым работаешь.


Пример необходимости системного подхода

  • Работа врача.
  • При лечении какого-нибудь органа, необходимо учитывать взаимосвязь этого органа со всем организмом.

Пример отсутствия системного подхода

  • Экологическая катастрофа с Аральским морем
  • Море стало пересыхать из-за разбора воды из Сырдарья и Амударья.

Деятельность таких «преобразователей природы» очень опасна. В последнее время появилось понятие «экологическая грамотность». Вмешиваясь в природу, нельзя быть узким специалистом: только нефтяником, только химиком и пр.

Вывод:

Занимаясь изучением или преобразованием природы, надо видеть в ней систему и прилагать усилия для того, чтобы не нарушать её равновесия.



Домашнее задание

  • § 5;
  • вопросы 1 – 8 на стр. 32

Базовым понятием математического моделирования является понятие системы . Система в широком смысле - эквивалент понятия математической модели и задается парой множеств U, Y (U - множество входов, Y - множество выходов) и отношением на , формализующим связь (зависимость) между входами и выходами.

Соединение систем также является системой и задается отношением. Например, последовательное соединение систем , есть отношение такое, что , если существуют , удовлетворяющие условиям , , , где - отношение, определяющее связь между и . Таким образом можно определять сколь угодно сложные си­стемы, исходя из простых.

Приведенное определение отражает в абстрактном виде атрибуты (свойства), присущие нашему интуитивному представлению о системе: целостность и структурированность .

Целостность (единство) означает, что система отделена от внешней среды; среда может оказывать на нее действие (акцию) через входы и воспринимать отклик (реакцию) на эти действия через выходы.

Структурированность означает, что система разделена внутри на несколько подсистем, связанных и взаимодействующих между собой так же, как целая система взаимодействует с внешней средой.

Третье свойство, присущее системе, - целенаправленность - требует задания некоторой цели, достижение которой говорит о правильной работе системы.

Приведем для сравнения другие, менее формальные определения системы.

Система - объективное единство закономерно связанных друг с другом предметов, явлений, а также знаний о природе и обществе (БСЭ. Т. 39. С. 158).

Система - совокупность взаимосвязанных элементов (объектов, отношений), представляющих единое целое. Свойства системы могут отсутствовать у составляющих ее элементов .



Приведенное выше формальное определение весьма общо; под него подпадают практически все виды математических мо­делей систем: дифференциальные и разностные уравнения, регрессионные модели, системы массового обслуживания, конечные и стохастические автоматы, дедуктивные системы (исчисления) и т.д. Можно трактовать как систему любой пре­образователь входных данных в выходные («черный ящик») (рис. 1.1,а). Например, системой можно назвать процесс решения любой задачи. При этом входами будут являться ис­ходные данные, выходами - результаты, а целью - правильное решение (рис. 1.1,б). Такой подход к системе подчер­кивает ее целенаправленность и ведет свое происхождение от исследования операций - научной дисциплины, зани­мающейся разработкой количественных методов обоснования решений. Основное понятие здесь - операция: действие, которое подвергается исследованию (проектирование, конструи­рование, управление, экономическая деятельность и т.д.). Операция соответствует некоторой системе. Входами этой системы являются элементы принимаемого решения, о проводимой операции, выходами - результаты проведения операции (показатели ее эффективности (рис. 1.1,в)). Для развития навыков системного подхода полезно искать примеры систем в окружающем мире. Некоторые примеры представлены в табл. 1.1.

Подчеркнем, что функционирование системы - это процесс, разворачивающийся во времени, т. е. множества возможных входов и выходов U, Y - это множества функций времени со значениями соответственно в множествах U, Y:

где Т - множество моментов времени, на котором рассматривается система.

Система называется функциональной (определенной), если каждой входной функции u(t ) соответствует единственная выходная функция y(t ). В противном случае система называется неопределенной. Неопределенность обычно возникает из-за неполноты информации о внешних условиях работы системы. Важным свойством, присущим реальным си­стемам, является причинность. Она означает, что если входные функции и совпадают при , т.е. при , то соответствующие выходные функ­ции удовлетворяют условию , т. е. «настоящее не зависит от будущего при заданном прошлом».

Числовые величины, связанные с системой, делятся на переменные и параметры. Параметры - это величины, кото­рые можно считать постоянными на промежутке времени рассмотрения системы. Остальные числовые величины являются переменными. Значения переменных и параметров определяют количественную информацию о системе. Оставшаяся информация, т.е. качественная, определяет структуру системы. Различие между переменными и параметрами, а также между параметрами и структурой может быть условным, однако оно полезно в методическом отношении. Так, типовым приемом построения ММ системы является параметризация - выбор в качестве ММ семейства функций, зависящих от конечного (обычно небольшого) количества чисел - параметров.


Таблица 1.1

Примеры систем

№ п/п Система Вход Выход Цель
Радиоприем­ник Радиоволны Звуковые волны Неискажен­ный звук
Проигрыва­тель Колебания иглы " "
Термометр Т° воздуха (Т) Высота столбика (h) Верное пока­зание
Водопроводный, кран Поворот ручки (угол φ) Струя воды (расход G) Заданный расход
Ученик Лекция учителя, текст в учебнике, книги, кино, телевизор Отметки, знания, поступки Хорошие отметки, хорошие поступки, хорошие знания
Учитель План урока, ответы учеников Лекции, задачи для контрольной, отметки "
Робот Команды Движения Точное испол­нение команд
Популяция зайцев в лесу Пища Численность Максимальная численность
Популяция лис в лесу " " "
Программа ЭВM решения уравнения ax 2 +bx + c=0 Коэффициенты а, b, с. Точность Е . Решение с заданной точ­ностью
Задача реше­ния уравнения ах г +bх + с=0 а, b, с Формула Правильная формула
Электромотор Электрический ток Вращение ротора Вращение с заданной частотой
Костер Дрова Тепло, свет Заданное количество тепла и света
Торговля Продукты, вещи Деньги Получение суммы денег = стоимости товара
Бюрократ Бумажка Бумажка Зарплата

Этапы системного анализа

Системный анализ в широком смысле - это методология (совокупность методических приемов) постановки и решения задач построения и исследования систем, тесно связанная с математическим моделированием. В более узком смысле системный анализ - методология формализации сложных (трудно формализуемых, плохо структурированных) задач. Системный анализ возник как обобщение приемов, накопленных в задачах исследования операций и управления в технике, экономике, военном деле.

Остановимся на различии в употреблении терминов «системный анализ» и «системный подход» . Системный анализ - это целенаправленная творческая деятельность человека, на основе которой обеспечивается представление исследуемого объекта в виде системы. Системный анализ характеризуется упорядоченным составом методических приемов исследования. Что касается термина «системный подход», то традиция его применения связывает его с исследованиями проводимыми многоаспектно, комплексно, с разных сторон изучая предмет или явление. Этот подход предполагает, что все частные задачи, решаемые на уровне подсистем, должны быть увязаны между собой и решаться с позиции целого (принцип системности). Системный анализ - более конструктивное направление, содержащее методику разделения процессов на этапы и подэтапы, систем на подсистемы, целей на подцели и т.д.

В системном анализе выработана определенная последовательность действий (этапов) при постановке и решении задач, которую будем называть алгоритмом (методикой) системного анализа (рис. 1.2). Эта методика помогает более осмысленно и грамотно ставить и решать прикладные задачи. Если на каком-то этапе возникают затруднения, то нужно вернуться на один из предыдущих этапов и изменить (модифицировать) его.

Если и это не помогает, то это значит, что задача оказалась слишком сложной и ее нужно разбить на несколько более простых подзадач, т.е. провести декомпозицию (см. подразд. 1.3). Каждую из полученных подзадач решают по той же методике. Для иллюстрации применения методики системного анализа приведем пример .

Пример. Рассмотрим автомобиль, находящийся перед гаражом на некотором расстоянии от него (рис. 1.3, а). Требуется поставить автомобиль в гараж и сделать это, по возможности, наилучшим образом. При решении попытаемся руководствоваться алгоритмом системного анализа (см. рис. 1.2).

Этап 1. Система: автомобиль и гараж (автомобиль, приближающийся к гаражу).

Этап 2. Вход: сила тяги двигателя. Выход: пройденный путь.

Этап 3. Цель: автомобиль должен проехать заданный путь и затормозить.

Этап 4. Построение ММ начинается с обозначения всех величин (переменных и постоянных), существенных для задачи. Введем следующие обозначения:

u (t )-сила тяги в момент времени t (вход);

y (t )-путь, пройденный к моменту t (выход);

у* - расстояние от автомобиля до гаража (параметр).

Затем выписываются все уравнения и соотношения, существующие между введенными величинами, как в школьных задачках на составление уравнений. Если возможных уравнений несколько, выбирают простейшее. В нашей задаче - это уравнение динамики (2-й закон Ньютона):

где m - масса автомобиля, а также начальные условия

0, =0. (1.1б)

Этап 5. Модель (1.1) достаточно хорошо изучена и в детальном анализе не нуждается. Укажем лишь, что она адекватна, если можно пренебречь размерами автомобиля, огра­ничением на его мощность, силами трения и сопротивления и другими более второстепенными факторами.

Этап 6. Простейший вариант формализации цели

где - момент остановки - оказывается неудовлетворительным, поскольку в (1.2) не формализовано само требование остановки ()=0 и, значит, неясно, как система будет вести себя при . Правильнее задать цель соотношением

При , (1.3)

из которого следует, в частности, что y(t)-0 при t>t*.

На первый взгляд, задача поставлена и можно переходить к ее решению, т.е. к этапу 8. Но, оказывается, однозначного решения задача не имеет: здравый смысл говорит о том, что существует бесконечно много способов достичь цели (1.3). Значит, нужно дополнить цель правилом отбора способов, позволяющим отвечать на вопрос: какой способ лучше. Зададимся следующим разумным правилом: тот способ считается лучшим, который быстрее приводит к цели. Формально новую цель можно записать так:

При , (1.4)

Но теперь физические соображения показывают, что решение поставленной задачи тривиально: искомый минимум в (1.4) равен нулю! Действительно, выбрав достаточно большую силу тяги, можно придать автомобилю как математическому объекту, описываемому ММ (1.1), сколь угодно большое ускорение и сколь угодно быстро переместить его на любое заданное расстояние. Видимо, требуется ввести какие-то ограничения, исключающие бессмысленные решения. Можно было бы усложнить ММ системы: учесть ограниченную мощность двигателя, его инерционность, силы трения и т.д. Однако разумнее попытаться остаться в рамках ММ (1.1) (1.4), введя дополнительно лишь ограничения на силу тяги

Таким образом, чтобы придать задаче смысл, нам пришлось возвратиться на этап 7.

Этап 8. Для решения задачи можно было бы применить мощный и хорошо разработанный аппарат теории оптимального управления (вариационное исчисление, принцип максимума Понтрягина и др., см., например ). Однако сначала надо попытаться решить задачу элементарными средствами. Для этого часто бывает полезно перейти к геометрической интерпретации задачи, чтобы привлечь нашу геометрическую интуицию. Естественная интерпретация (рис. 1.3, б) не дает ключа к решению, так как не позволяет в удобной форме представить ограничения на допустимые траектории движения автомобиля. Дело меняется коренным образом, если перейти к другой ММ. Введем новую переменную: (скорость). Тогда вместо (1.1) возникает уравнение

Г : график оптимальной траектории представляет собой трапецию.

Еще более сложные задачи (например, при введении ограничений на расход топлива в виде не имеют простого аналитического решения, подобного (1.9), и практически решаются лишь численно, с привлечением математического аппарата приближенной минимизации функционалов см., например, ). Однако и для них решение упрощенной задачи не теряет важности, поскольку оно позволяет получить начальное приближение к решению сложной задачи, установить качественные свойства решения сложной задачи, выявить факторы, наиболее сильно влияющие на решение сложной задачи, и, главное, соотнести результаты математического исследования со здравым смыслом.

Резюмируя сказанное, можно дать совет изучающему математическое моделирование: «не решай сложную задачу, не решив сначала более простую!».

Работа добавлена на сайт сайт: 2016-03-13

Заказать написание уникльной работы

">Вопросы входного контроля 3

  1. ">Сущность понятия «закономерность» 4
  2. ">Закономерности взаимодействия целого и частного 6
  3. ">Закономерности осуществимости систем 11
  4. ">Закономерности развития систем 14
  5. ">Закономерности целеобразования 16
  6. ">Список использованных источников 18

">Вопросы входного контроля:

  1. ">Что такое система? Приведите примеры различных систем.

">Система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство. Примеры: человек – это система биологическая, город Казань – система социально-экономическая, любое предприятие или организация – тоже система, телевизор – система, сотовый телефон – система, Периодическая система химических элементов Д. И. Менделеева – тоже система и т.д.

  1. ">Что такое закономерность?

">Закономерность – это объективная, необходимая, существенная, постоянно повторяющаяся связь или отношение между явлениями или процессами, которая порождает качественную определенность явлений и их свойства.

  1. ">Приведите примеры закономерностей?

">В биологии, например, говорят о закономерностях эволюции, к которым относят: параллелизм, когда один и тот же вид на различных географически отдаленных, но схожих по климату территориях развивается одинаково.

">Статистические закономерности. Например, несмотря на то, что конкретными примерами наибольшей продолжительности жизни являются мужчины (азербайджанец Ширали Мислимов прожил 168 лет (1805-1973)), закономерность считается, что в среднем женщины живут дольше мужчин на 10-15 лет.

">

  1. ">Сущность понятия закономерность. Понятия целого и части и их отношения с понятиями «система» и «элемент»

">На сегодняшний день однозначного понятия закономерности не существует. Различные авторы приводят разные трактовки данного понятия:

">Закономерность – это объективная, повторяющаяся при определенных условиях существенная связь явлений в природе и обществе. [Толковый словарь] Данный источник делает акцент на том, что закономерность это явление не зависящее от мышления человека (объективное) и циклически повторяющееся.

">Закономерность - мера вероятности наступления какого-то события или явления либо их взаимосвязи. [Добреньков В. Кравченко А.]

">Закономерности систем - это общесистемные закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем [Волкова, Емельянов].

">Понятие «система» и «целое», как и понятия «элемент» и «часть», близки по содержанию, но полностью не совпадают. Согласно одному из определений, «целым называется (1) то, у чего не отсутствует ни одна из тех частей, состоя из которых оно именуется целым от природы, а также (2) то, что так объемлет объемлемые им вещи, что последние образуют нечто одно» (Аристотель).

">Понятие «целое» по своему объему уже понятия системы. Системами являются не только целостные, но и суммативные системы, не принадлежащие к классу целостных. В этом первое отличие «целого» от «системы». Второе: в понятии «целое» акцент делается на специфичности, на единстве системного образования, а в понятии «система» - на единстве в многообразии. Целое соотносимо с частью, а система - с элементами и структурой.

">Понятие «часть» уже по своему объему, чем понятие «элемент» по первой линии отличия целостных образований от систем. С другой стороны, в части могут входить не только субстратные элементы, но и те или иные фрагменты структуры (совокупности отношений) и структура систем в целом. Если соотношение элементов и системы есть соотношение разных структурных уровней (или подуровней) организации материи, то соотношение частей и целого есть соотношение на одном и том же уровне структурной организации. «Часть, как таковая, имеет смысл только по отношению к целому, она несет на себе черты его качественной определенности и не существует самостоятельно. В отличие от части элемент является определенным компонентом любой системы, относительным пределом ее делимости, означающим переход к следующему, соответственно более низкому по организации уровню развития материи, и, следовательно, по отношению к системе всегда будет объектом иного качества» (О. С. Зелькина).

">«Целое» и «часть» - это не совпадающие, противоположные категории. В части - не только специфичность целого, но и индивидуальность, своеобразие, зависящее от природы исходного элемента. Часть отделена от целого, обладает относительной автономностью, выполняет свои функции в составе целого (одни части - более существенные функции, другие - менее существенные). Наряду с этим «целое управляет частью... по крайней мере в главном» (И. Дицген).

">Наиболее распространенная классификация закономерностей развития систем приведена на рисунке 1.1

">Рис 1.1. Классификация закономерностей развития систем ">

  1. ">Закономерности взаимодействия целого и частного

">Закономерность целостности (эмерджентности) ">- закономерность, проявляющаяся в системе в виде возникновения, появления (emerge - появляться) у нее новых свойств, отсутствующих у элементов.

">Для того чтобы глубже понять закономерность целостности, необходимо прежде всего учитывать три ее стороны:

">1) свойства системы (" xml:lang="en-US" lang="en-US">Q ;vertical-align:sub" xml:lang="en-US" lang="en-US">s ">) не являются суммой свойств составляющих её элементов " xml:lang="en-US" lang="en-US">q ;vertical-align:sub" xml:lang="en-US" lang="en-US">i "> :

">2) свойства системы зависят от свойств составляющих её элементов:

">3) объединенные в систему элементы, как правило, утрачивают часть своих свойств, присущих им вне системы, т.е. система как бы подавляет ряд свойств элементов, но, с другой стороны, элементы, попав в систему, могут приобрести новые свойства.

">Свойство целостности тесно связано ">с целью ">, для выполнения которой создается система. При этом если цель не задана в явном виде, а у отображаемого объекта наблюдаются целостные свойства, можно попытаться определить цель или выражение, связывающее цель со средствами ее достижения (целевую функцию, системообразующий критерий), путем изучения причин появления закономерности целостности.

">Наряду с изучением причин возникновения целостности можно получать полезные для практики результаты путем сравнительной оценки степени целостности систем (и их структур) при неизвестных причинах ее возникновения.

">Закономерность интегративности. ">Интегративность определяет наличие специфических качеств системы, присущих только ей. Данные качества формируются определенной совокупностью элементов, которые не могут в отдельности воспроизвести качества системы. Интегративность системы часто употребляется как синоним целостности, но им подчеркивается интерес не к внешним фактам проявления целостности, а к более глубоким причинам формирования этого свойства. Интегративными называют системообразующие, системосохраняющие факторы, важными среди которых являются неоднородность и непротиворечивость ее элементов.

">Закономерность коммуникативности ">. Эта закономерность составляет основу определения системы, предложенного В. Н. Садовским и Э. Г. Юдиным, из которого следует, что система не изолирована от других систем, она связана множеством коммуникаций с внешней средой. Последняя представляет собой сложное и неоднородное образование, которое, в свою очередь, содержит систему более высокого порядка или надсистему (или надсистемы), задающую требования и ограничения исследуемой системе. Кроме этого, она может содержать также подсистемы (нижележащие, подведомственные системы) и системы одного уровня с уровнем рассматриваемой.

">Таким образом, закономерность коммуникативности предполагает, что система образует особое, сложное единство со средой, которое позволяет вскрыть механизмы построения общих моделей живой и неживой природы, а также любых выде­ленных из нее локальных систем на разных уровнях анализа.

">В силу закономерности коммуникативности, которая проявляется не только между выделенной системой и ее окружением, но и между уровнями иерархии исследуемой системы, каждый уровень иерархической упорядоченности имеет сложные взаимоотношения с вышестоящим и нижележащим уровнями.

">Первооткрывателем "> закономерности иерархичности или иерархической упорядоченности ">можно считать Л. фон Берталанфи, который показал связь иерархической упорядоченности мира с явлениями дифференциации и негэнтропийными тенденциями, т.е. с ">закономерностями самоорганизации ">, развития ">открытых систем ">.

">При анализе и изучении систем необходимо учитывать учитывать не только внешнюю структурную сторону иерархии, но и функциональные взаимоотношения между уровнями. Более высокий иерархический уровень оказывает ">направляющее воздействие "> на нижележащий уровень, подчиненный ему, и это воздействие проявляется в том, что подчиненные компоненты иерархии приобретают ">новые свойства ">, отсутствовавшие у них в изолированном состоянии, а в результате появления этих новых свойств формируется новый, другой «облик целого». Возникшее таким образом новое целое приобретает способность осуществлять новые функции, в чем и состоит цель образования иерархий. Иными словами, речь идет о ">закономерности эмердэюентности, ">или ">целостности ">(см. ">Закономерность целостности) ">и ее проявлении на каждом уровне иерархии.

">Иерархические представления помогают лучше понять и исследовать феномен сложности. Основными особенностями иерархической упорядоченности с позиции полезности их использования в качестве моделей системного анализа являются следующие:

">1. В силу закономерности ">коммуникативности, ">которая проявляется не только между выделенной системой и ее окружением, но и между уровнями иерархии исследуемой системы, каждый уровень иерархической упорядоченности имеет сложные взаимоотношения с вышестоящим и нижележащим уровнями.

">По метафорической формулировке, используемой Кёстлером, каждый уровень иерархии обладает свойством «двуликого Януса»: «лик», направленный в сторону нижележащего уровня, имеет характер автономного целого (системы), а «лик», направленный к узлу (вершине) вышестоящего уровня, проявляет свойства зависимой части (элемента вышестоящей системы, каковой является для него составляющая вышестоящего уровня, которой он подчинен).

">2. Важнейшая особенность иерархической упорядоченности как закономерности заключается в том, что закономерность целостности, т.е. качественные изменения свойств компонентов более высокого уровня по сравнению с объединяемыми компонентами нижележащего, проявляется в ней на каждом уровне иерархии.

">3. При использовании иерархических представлений как средства исследования систем с неопределенностью происходит как бы разбиение «большой» неопределенности на более «мелкие», лучше поддающиеся исследованию.

">4. В силу закономерности целостности одна и та же система может быть представлена разными иерархическими структурами. Это зависит от цели и лиц, формирующих структуру.

">В связи с изложенным на этапе структуризации системы (или ее цели) необходимо ставить задачу выбора варианта структуры для дальнейшего исследования или проектирования системы, для организации управления технологическим процессом, предприятием, проектом и т.д. Для того чтобы помочь в решении подобных задач, разрабатывают методики структуризации, методы оценки и сравнительного анализа структур. Вид иерархической структуры зависит также от применяемой методики.

">Благодаря рассмотренным особенностям иерархические представления могут использоваться в качестве средства для исследования систем и проблемных ситуаций с большой начальной неопределенностью.

">Закономерность аддитивности ">- закономерность теории систем, двойственная по отношению к ">закономерности целостности "> Свойство ">аддитивности "> (независимости, суммативности, обособленности) проявляется у элементов, как бы распавшихся на независимые элементы и выражается следующей формулой:

">Любая развивающаяся система находится, как правило, между состоянием абсолютной ">целостности ">и абсолютной ">аддитивности, ">и вьщеляемое состояние системы (ее «срез») можно охарактеризовать степенью проявления одного из этих свойств или тенденций к его нарастанию или уменьшению.

">

">3. Закономерности осуществимости систем

">Данную группу раскрывают следующие три закономерности:

  1. ">Эквифинальность потенциальной эффективности
  2. ">Закон «необходимого разнообразия У. Эшби»
  3. ">Потенциальная осуществимость Б. С. Флешмана

">Закономерность эквифинальности ">- одна из ">закономерностей функционирования и развития систем ">, характеризующая предельные возможности системы.

">Этот термин предложил Л. фон Берталанфи, который для открытой системы определил эквифинальность как «способность, в отличие от состояния равновесия в закрытых системах, полностью детерминированных начальными условиями, достигать не зависящего от времени состояния, которое не зависит от ее начальных условий и определяется исключительно параметрами системы»

">Потребность во введении понятия эквифинальности возникает, начиная с некоторого уровня сложности систем. Эта закономерность заставляет задуматься о предельных возможностях создаваемых предприятий, организационных систем управления отраслями, регионами, государством. Особый интерес представляют исследования возможных уровней существования социально-общественных систем, что важно учитывать при определении целей системы.

">На необходимость учитывать предельную осуществимость системы при ее создании впервые обратил внимание У.Р. Эшби и обосновал ">Закон «необходимого разнообразия».

">Основным следствием данной закономерности является следующий вывод: чтобы создать систему, способную справиться с решением проблемы, обладающей определенным, известным разнообразием, нужно, чтобы сама система имела еще большее разнообразие, чем разнообразие решаемой проблемы, или была способна создать в себе это разнообразие.

">Применительно к системам управления закон «необходимого разнообразия» может быть сформулирован следующим образом: разнообразие управляющей системы (системы управления) должно быть больше (или по крайней мере равно) разнообразию управляемого объекта ">.

">На основе «необходимого разнообразия У. Эшби», В.И. Терещенко предложил следующие пути совершенствования управления при усложнении производственных процессов:

  1. ">Увеличение разнообразия системы управления путем роста численности аппарата управления, повышения его квалификации, механизации, автоматизации управленческих работ.
  2. ">Уменьшение разнообразия системы управляемого объекта за счет установления правил поведения системы: унификация, стандартизация, типизация, введение поточного производства.
  3. ">Снижение уровня требований к управлению.
  4. ">Самоорганизация объектов управления.

">К середине 70-х гг. XX в. первые три пути были исчерпаны, и основное развитие получил четвертый путь на основе более широкой его трактовки - внедрение хозрасчета, самофинансирования,самоокупаемости и т.п.

">Закономерностью теории систем, объясняющей возможность осуществимости систем является ">закономерность потенциальной эффективности.

">Б.С. Флейшман связал сложность структуры системы со сложностью ее поведения, предложил количественные выражения предельных законов надежности, помехоустойчивости, управляемости и других качеств систем и показал, что на их основе можно получить количественные оценки осуществимости систем с позиции того или иного качества – предельные оценки жизнеспособности и потенциальной эффективности сложных систем.

">Эти оценки исследовались применительно к техническим и экологическим системам и пока еще мало применялись для социально-экономических систем. Но потребность в таких оценках на практике ощущается все более остро.

">Например, нужно определять: когда исчерпываются потенциальные возможности существующей организационной структуры предприятия и возникает необходимость в ее преобразовании, когда устаревают и требуют обновления производственные комплексы, оборудование и т.п.

">

">4. Закономерности развития систем

">Данная группа включает в себя закономерности самоорганизации и историчности.

">Закономерность историчности ">систем выражается в том, что любая система не может быть неизменной, что она не только возникает, функционирует, развивается, но и погибает, и каждый может привести примеры становления, расцвета, упадка (старения) и даже смерти (гибели) биологических и социальных систем.

">Однако для конкретных случаев развития организационных систем и сложных технических комплексов достаточно трудно определить эти периоды. Не всегда руководители организаций и конструкторы технических систем учитывают, что время является непременной характеристикой системы, что каждая система подчиняется ">закономерности историчности ">и что эта закономерность такая же объективная, как целостность, иерархическая упорядоченность и др. Поэтому в практике проектирования и управления на необходимость учета закономерности историчности начинают обращать все больше внимания. В частности, при разработке технических комплексов предлагают учитывать их «жизненные циклы», рекомендуют в процессе проектирования рассматривать не только этапы создания и обеспечения развития системы, но и вопрос о том, когда и как ее нужно уничтожить (возможно, предусмотрев «механизм» ее ликвидации или самоликвидации).

">Так, рекомендуют при создании технической документации, сопровождающей систему, включать в нее не только вопросы эксплуатации системы, но и ее срок жизни, ликвидацию. При регистрации предприятий также требуется, чтобы в уставе предприятия был предусмотрен этап его ликвидации.

">Однако закономерность историчности можно учитывать, не только пассивно фиксируя старение, но и использовать для предупреждения «смерти» системы, разрабатывая «механизмы» реконструкции, реорганизации системы для разработки или сохранения ее в новом качестве.

">Характерной особенностью развивающихся систем является их ">способность к самоорганизации ">, которая проявляется в самосогласованном функционировании системы за счет внутренних связей с внешней средой. Рассматривая развитие как процесс самоорганизации системы, выделим в нем две основные фазы: адаптацию, или эволюционное развитие и отбор. Самоорганизующиеся системы обладают механизмом непрерывной приспособляемости (адаптации) к меняющимся внутренним и внешним условиям, непрерывного совершенствования поведения с учетом прошлого опыта. При исследовании процессов самоорганизации будем исходить из предположения, что в развивающихся системах структура и функция тесно взаимосвязаны. Система преобразует свою структуру для того, чтобы выполнить заданные функции в условиях меняющейся внешней среды. ">

">

">5. Закономерности целеобразования

">К данной группе относятся ">закономерности формулирования ">целей ">в открытых системах с активными элементами.

">Основными закономерностями целеобразования являются следующие.

">1. Зависимость представления о цели и формулировки цели от стадии познания объекта (процесса) и от времени. ">При формулировании и пересмотре цели коллектив, выполняющий эту работу, должен определить, в каком смысле на данном этапе рассмотрения объекта и развития наших представлений о нем употребляется понятие ">цели ">, к какой точке условной шкалы «идеальные устремления в будущее - реальный конечный результат деятельности» ближе принимаемая формулировка цели.

">По мере углубления исследований, познания объекта цель может сдвигаться в одну или другую сторону на шкале, а соответственно должна изменяться и ее формулировка.

">2. Зависимость цели от внешних и внутренних факторов. ">При анализе причин возникновения и формулирования цели нужно учитывать, что на нее влияют как внешние по отношению к системе факторы, так и внутренние факторы.

">Цели могут возникать на основе взаимодействия противоречий (или, напротив, коалиций) как между внешними и внутренними факторами, так и между внутренними факторами, уже существующими и вновь возникающими в целостности, находящейся в постоянном самодвижении.

">Эта закономерность характеризует очень важное отличие ">открытых систем ">(см.), развивающихся систем с активными элементами от технических систем, отображаемых обычно замкнутыми, или ">закрытыми ">моделями. В открытых, развивающихся системах цели не задаются извне, а формируются внутри системы на основе закономерности целеобразования.

">3. Возможность (и необходимость) сведения задачи формулирования обобщающей (общей, глобальной) цели к задаче ее структуризации.

">4. Закономерности формирования структур целей:

  1. ">зависимость способа представления цели от стадии познания объекта;

">Цели могут представляться в форме различных ">структур: сетевых, иерархических ">, ">древовидных, со «слабыми связями», ">в виде ">«страт» ">и ">«эшелонов», "> в ">матричной ">(табличной) форме и др..

">На начальных этапах моделирования системы, как правило, удобнее применять декомпозицию в пространстве, предпочтительнее - древовидные иерархические структуры.

  1. ">проявление в структуре целей закономерности целостности;

">В иерархической структуре закономерность целостности, или эмерджентности проявляется на любом уровне иерархии.

  1. ">закономерности формирования иерархических структур целей
  2. ">закономерности формирования структур целей.

">

">7. Список использованных источников

  1. ">Волкова В.Н. Основы теории систем и системного анализа, 2009.
  2. ">В.Н. Волкова, А.А. Денисов. - СПб.: Изд-во СПбГТУ, 2007.
  3. ">Волкова Н.В. Теория систем и системный анализ в управлении организациями: ТЗЗ Справочник: Учеб. пособие / Под ред. В.Н. Волковой и А.А. Емельянова.- М.: Финансы и статистика, 2006.
    17. тема принципов и норм регулирующих отношения властного порядка между государствами и другими субъектами ме.html
    18. климатических демографических социальных экономических в конечном итоге производственных- факторы живог
    19. Лабораторная работа 2 Цель работы- изучение способов представления числовых данных в микроконтроллера
    20. Органы полового размножения мхов антеридии и архегонии развиваются на- а спорофите б мужском и женско

    Материалы собраны группой SamZan и находятся в свободном доступе

Наш первый пример - это система, в которой нет поступлений и есть два поглощающих (или конечных) состояния. Он был выбран с целью проиллюстрировать, что хорошая стохастическая модель имеет ряд достоинств по сравнению с приемами, которые иногда использовались для решения подобных задач. Это довольно упрощенный пример описания полной неопределенности, которая возникает после лечения заболевания раком. Пациент после лечения может по прошествии некоторого времени находиться в одном из множества состояний. Эти состояния могут классифицироваться, например, так: «здоров», «заболел вновь» (рецидив болезни), «мертв»; точность классификации, очевидно, зависит от целей исследования и от имеющихся возможностей по получению данных. Стохастическая модель описания жизни пациентов после лечения от заболевания раком была построена Фикс и Нейманом (1951) и обсуждалась в более общем виде Залем (1955). Фикс и Нейман применили эту модель для оценки эффективности лечения. Далее мы опишем, как они это делали. Отметим, кстати, что указанная модель достаточно общего вида, и у нее могут быть также другие приложения.

В модели Фикс и Неймана введены четыре состояния. Описание состояний и возможные переходы показаны на рис. 5.1. Авторы понимали

трудность определения состояния «выздоровел» и отметили, что было бы желательно некоторые из состояний разделить. Например, пациенты, находящиеся в состоянии могут быть разделены на две группы: те, кто умер по естественным (ненасильственным) причинам, и те, судьбу которых проследить не удалось.

Можно также предположить, что необходимо предусмотреть возможность перехода из состояния в состояние Мы не будем отклоняться в сторону, обсуждая эти детали, так как этот пример приведен прежде всего для того, чтобы проиллюстрировать применение теории марковских процессов к описанию жизни людей.

Первая задача в данном приложении - оценить интенсивности переходов. Для этого использовались данные о выживших, при этом сами данные были лишены недостатков, присущих в общем случае такого рода измерениям. Один из способов измерения - определение доли выживших в году. Это относительное число оставшихся в живых, по крайней мере, в течение Т лет от всех прошедших курс лечения. Такие измерения были бы удовлетворительными, если бы рак был единственной причиной смерти и если бы все больные наблюдались в течение полных Т лет. Практически так никогда не бывает, и доля выживших в году может привести к ошибочным выводам. Чтобы убедиться в неточности такого утверждения, заметим только, что измеренная интенсивность (доля) будет больше, так как следует измерить также долю тех, кто выбыл из поля зрения или умер по другим причинам, т. е. относительно большее число людей осталось бы в живых до предельного срока, если бы им суждено было умереть только от заболевания раком. Таким образом, наблюдаемые значения интенсивностей перехода зависят не только от опасности умереть от рака, но и от других причин, не имеющих отношения к заболеванию раком. Если сопоставлять по грубым интенсивностям переходов группу тех, кто прошел курс лечения, и контрольную группу, то сравнение не имело бы смысла, если бы эти две группы подвергались различным опасностям по различным причинам. Чтобы преодолеть эти естественные трудности, обычно вычисляют чистые интенсивности, которые учитывают

такие различия. Цель приведенного примера - показать, что стохастическая модель дает лучшую основу для оценки чистых интенсивностей, чем метод, используемый в страховом деле.

Интенсивности переходов между состояниями в модели Фикс и Неймана полагали постоянными величинами. Однако хорошо известно, что естественная смертность людей - непостоянная величина, и после периода младенчества она увеличивается с возрастом. В средний период жизни она не очень быстро увеличивается, и если период времени Т достаточно короткий, то предположение о постоянстве будет вполне адекватно действительности. Во всяком случае, мы покажем, что можно собирать данные таким образом, чтобы можно было проверять эти предположения. Интенсивность смерти после лечения рака разных видов широко изучается. Время жизни после лечения, как было выяснено, имеет асимметричный характер, Боаг (1949), например, сделал предположение, что оно часто может быть адекватно описано с помощью асимметричного логнормального распределения. В этом случае логнормальное распределение нелегко отличить от экспоненциального, которое появляется при постоянной интенсивности смерти. Таким образом, предположение, что интенсивность смерти от рака является постоянной величиной, вероятно, достаточно реалистично. Непосредственно проанализировать факторы, влияющие на интенсивность переходов из состояния в (выздоровление) и из состояния не представляется возможным, но кажется правдоподобным предположение о постоянстве интенсивностей потерь по разным причинам, по крайней мере для интенсивностей выпадения пациентов из поля зрения.

В нашей модели мы предполагаем, что в нулевой момент времени в состоянии находится N людей, в других состояниях людей нет. Численности людей в четырех группах в последующие моменты времени Т будут случайными величинами, которые мы обозначим через - математическое ожидание случайной величины . Наблюдая эти случайные величины в один или несколько моментов времени, можно оценить интенсивности переходов. Затем, используя оценки, можно предсказать численности различных состояний в будущем. Наиболее важна возможность оценить эти численности, если смерть от заболевания раком будет единственной причиной.

Применение теории

Расширенная матрица в описываемом случае имеет вид

где Уравнение для нахождения собственных чисел матрицы есть или

Очевидно, что это уравнение имеет два нулевых корня; два оставшихся корня, которые мы обозначим следующие:

причем для расчета возьмем положительный знак, а для - отрицательный. Тогда, используя (4.24), получим

Следующий шаг - записать и решить однородные уравнения для коэффициентов. Для начала положим будет принимать значения 2, 3 и 4. Таким образом,

Приведем три группы уравнений для и 4:

Из уравнений немедленно следует, что и, следовательно, первые уравнения в каждой группе можно опустить. Начальные условия состоят в том, что в нулевой момент времени все индивидуумы системы находятся в состоянии Предположим далее, что Если то соответствующие значения могут быть найдены просто умножением на N результата, полученного при предположении, что . Тогда в добавление к записанным выше уравнениям имеем

Для решения этих уравнений проделаем следующие преобразования. Сложим правые и левые части уравнений (5.22) и, используя начальные условия, получим

Сделав аналогичные преобразования для (5.23), будем иметь

но это уравнение может быть получено через и си из уравнения (5.23), что дает

Затем можно совместно решить однородные уравнения (5.27) и (5.28), что позволяет записать:

и, следовательно,

Сделав подобные преобразования для (5.24) и (5.25), получаем

Остается определить две константы: Используя начальные условия, находим

(5.30)

Сейчас рассмотрим, как использовать эти результаты, чтобы сравнить интенсивности выживания. Когда величина может быть интерпретирована как вероятность находиться в состоянии - в момент времени Т. Таким образом, представляют собой соответственно грубые интенсивности смерти вследствие заболевания раком и по естественным причинам. Однако зависит также от интенсивности естественной смерти и, как мы указывали выше, это уменьшает ее величину как меру риска. На самом деле нам нужна чистая мера риска (чистая интенсивность смерти), из которой устранено влияние естественной смертности. Согласно подходу к задаче, используемому в страховом деле, чистая интенсивность смерти от рака определяется по формуле

Величина (5.32) должна давать среднее число смертей от заболевания раком на интервале (0, Т), если бы смертности по естественным причинам не было. Смысл уравнения (5.32) станет яснее, если его переписать:

Второе слагаемое в правой части уравнения (5.33) - оценка численности людей, которые умерли бы от рака в течение рассматриваемого периода, если не умерли бы по другим естественным причинам. Оно получено в предположении, что смерть от рака, вероятность которой равна одной второй, предшествует естественной смерти по другим причинам. Предлагаемая модель предоставляет другой метод для оценки чистых интенсивностей смерти от рака. Мы можем исключить влияние естественной смертности, положив Тогда чистая интенсивность записывается как

где нулевые индексы в означают, что положена равной нулю.

Применение этих результатов может быть проиллюстрировано численными примерами. Возьмем следующие значения интенсивностей переходов:

Подставляя эти величины в (5.20), для примера 1 находим:

а для примера 2:

Можно выявить одну особенность, показывающую несостоятельность метода определения интенсивности смерти, принятого в страховом деле, если рассмотреть предельное поведение (5.32) при Вместо того, чтобы стремиться к единице, как следовало бы ожидать от достаточно обоснованной меры, она стремится к значению, меньшему единицы в обоих примерах. Анализ (5.32) показывает, что этот результат всегда имеет место. Очевидно также, что в общем случае при достаточно большом Т. Некоторые численные значения содержатся в табл. 5.1.

Приведенный пример - хорошая иллюстрация использования стохастической модели для измерения социального явления. Он показывает также, что коррекция измерений с позиций «здравого смысла» может существенно обесценить проведенные измерения. Высказанные доводы предполагают, что модель адекватна описываемому явлению. Если в действительности интенсивности переходов не постоянны, то более простая статистическая оценка иногда предпочтительнее, потому

Таблица 5.1. Сравнение чистых интенсивностей смерти от рака, вычисленных с помощью метода, используемого в страховом деле, и с помощью стохастической модели

что она не зависит от распределения. Как будет показано, именно грубые методы эффективны при проверке адекватности модели.

При обсуждении модели предполагалось, что интенсивности переходов известны. На практике они не бывают известными, и их необходимо оценить по имеющимся данным. Общие методы оценивания упоминались в гл. 4, но для решения нашей задачи достаточно более простого метода Фикс и Неймана. В момент времени Т мы можем зафиксировать численности пациентов в начальный момент в каждом из четырех состояний. Эти численности могут рассматриваться как оценки для , которые в свою очередь получаются при неизвестных параметрах. В обсуждаемой модели метод позволяет получить четыре уравнения для оценки неизвестных параметров. К сожалению, эти уравнения не являются линейно независимыми, так как

где N - наблюдаемое число индивидуумов. Ситуация была бы еще хуже, если бы в матрице R были другие ненулевые интенсивности. Такие трудности можно преодолеть, исследуя состояния системы в нескольких точках оси времени. Другой метод - рассматривать некоторые другие характеристики системы, например, по предложению Фикс и Неймана, подсчитывать число пациентов, оставшихся в состоянии на интервале времени . Если материал наблюдений достаточно обширен, то можно не только оценить все параметры, но и проверить качество модели. Предельная структура может быть получена непосредственно, без проведения всех описанных вычислений, так как из (5.21) результат следует немедленно.

Из уравнений (5.30) и (5.31) получаем

Остальные предельные значения равны нулю. Таким образом, имеется простая зависимость от интенсивностей переходов. Вид этой зависимости может быть легко выявлен, если записать отношение этих величин в следующей форме:

где - отношение интенсивностей переходов из состояния «определен диагноз - заболевание раком», и - отношение интенсивностей переходов из состояния «здоров». Большая интенсивность потока выздоравливающих способствует увеличению доли тех пациентов, кто умирает по другим естественным причинам, но этому в некоторой степени будет противодействовать возможность и большей интенсивности потока рецидивов

Мы уже указывали, что модель первоначально была разработана для измерения эффективности лечения. Один из способов - рассчитать - чистую долю тех, кто умер бы от рака, при исключении влияния других причин. Фикс и Нейман приводят доводы в пользу того, что не единственная, но, видимо, наиболее подходящая мера для оценки выживания. Обсуждение этого вопроса выходит за рамки данной книги, но мы коснулись его потому, что величины будут полезны для построения других мер при дальнейших исследованиях. Например, Фикс и Нейман предполагают полезным рассчитывать среднюю длительность «нормальной» жизни в период так, как если бы рак был единственной причиной смерти. Поскольку - функция распределения длительности «нормальной» жизни при отсутствии других причин смерти, математическое ожидание может быть записано так:

Иерархическая кадровая система

Модели с непрерывным временем, описывающие иерархические системы, впервые были предложены Силом (1945) и Вайдой (1948). Хотя их модели немарковские, оба автора обсуждали некоторые особые случаи, которые совпадают с теми, что следуют из нашей общей теории. Рассмотрим систему, которая представлена диаграммой на рис. 5.2. Эта система имеет одно поглощающее состояние, обозначенное Продвижение возможно только на ближайшую градацию,

что изображена на схеме, а все вновь поступающие зачисляются на первую. Расширенная матрица интенсивностей переходов для описанной системы имеет вид

Простая треугольная структура позволяет нам получить точную формулу для собственных значений и коэффициентов которые есть в выражениях для определения переходных вероятностей

Отсюда мы тотчас же находим, что

Уравнения для определения коэффициентов с, полученные из (4.19), имеют вид

Начальные условия, представленные последними двумя уравнениями, следуют из того, что все вновь прибывшие начинают свою карьеру с градации 1 - низшей ступени служебной лестницы. Решение системы уравнений (5.40) дает

Представляют интерес только значения если в этом случае из (5.3) находим

Коэффициенты, полученные из (5.40), дают

и выражения для них можно подставить в (5.42). Подобные выражения могут быть найдены при соответствующих начальных условиях, но они же легко могут быть выведены из выражений для когда имеется простая иерархическая система Вновь поступивший, который начинает свою карьеру с ступени -уровневой системы, находится в том же состоянии, что и тот, который поступил на низшую (первую) ступень -уровневой системы. Заменяя на и переобозначая интенсивности переходов, найдем необходимые выражения. Ниже мы приведем пример. Очевидно, что верхний предел суммы в последнем члене выражения

Модель, которую мы описали, несколько более общего вида, чем марковская версия модели Вайды (1948). В последней предполагалось, что интенсивности поступлений и уходов постоянны, таким образом, результаты Вайды могут быть получены из наших, если положить скажем, для Мы имеем также ожидаемые численности ступеней для любого 7, а Вайда обсуждал только предельный случай.

Как мы указывали, по нескольким причинам требуется, чтобы все величины гц ) были различны. В случае, который мы сейчас обсудим, для поэтому равные Гц встречаются при равенстве интенсивностей уходов с различных ступеней. Случай, представляющий особый интерес, появляется тогда, когда для Это соответствует ситуации, в которой интенсивности продвижения и интенсивности уходов одни и те же для всех ступеней, кроме последней. Соответствующее изменение общей теории может быть получено при стремлении друг к другу собственных значений в выражении (5.43). Окончательное выражение для будет таким.

Система (греческое systema - целое, составленное из частей, соединения) – совокупность взаимодействия элементов, объединенных единством целей и образующих определенную целостность; это целенаправленное множество взаимосвязанных элементов любой природы; это объект, который определяется множествами элементов, преобразований, правил образования последовательностей элементов; это объект, состоящий из элементов, свойства которых не сводятся к свойству самого объекта.

Основные свойства систем : 1. Организованная сложность системы характеризуется наличием взаимосвязи между элементами (существует три типа связи: функционально-необходимые, избыточные (резервные), сингерические (дающие увеличение эффекта системы за счет взаимодействия элементов)). 2. Декомпоризуемость. 3. Целостность системы - принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов, и, в то же время, зависимость свойств каждого элемента от его места и функций внутри системы. 4. Ограниченность системы. Ограниченность системы связана с внешней средой. В понятие внешняя среда включают все системы элементов любой природы, оказывающие влияние на систему или находящиеся под ее воздействием. Возникает задача локализации системы (определения ее границ и существенных связей). Выделяют открытые и замкнутые системы. Открытые системы имеют связи с внешней средой, закрытые не имеют. 5. Структурность системы. Структурность - группирование элементов внутри системы по определенному правилу или принципу в подсистемы. Структура системы – совокупность связей между элементами системы, отражающих их взаимодействие. Разделяют связи двух типов: горизон­тальные и вертикальные. Внешние связи, направленные внутрь системы называют входами, из системы во внешнюю среду - выходами. Внутренние связи - связи между подсистемами. 6. Функциональная направленность системы, функции системы можно представить в виде набора некоторых преобразований, которые делятся на две группы.

Виды систем: 1. Простая система – это система, которая состоит из небольшого числа элементов, не имеющая разветвленной структуры (нельзя выделить иерархические уровни). 2. Сложная система – это система с разветвленной структурой и значительным количеством взаимосвязанных и взаимодействующих элементов (подсистем). Под сложной динамической системой следует понимать развивающиеся во времени и в пространстве целостные объекты, состоящие из большого числа элементов и связей и обладающие свойствами, которые отсутствуют у элементов и связей, их образующих. Структура системы – совокупность внутренних, устойчивых связей между элементами системы, определяющих ее основные свойства. Системы бывают: социальные, биологические, механические, химические, экологические, простые, сложные, вероятностные, детерминированные, стохастические. 3. Централизованная система – система, в которой некоторый элемент (подсистема) играет доминирующую роль. 4. Децентрализованная система – система, в которой нет доминирующей подсистемы. 5. Организационная система – система, которая представляет собой набор людей или коллективов людей. 6. Открытые системы – такие, в которых внутренние процессы существенно зависят от условий среды и сами оказывают на ее элементы значительное влияние. 7. Замкнутые (закрытые) системы – такие, в которых внутренние процессы слабо связаны с внешней средой. Функционирование закрытых систем определяется внутренней информацией. 8. Детерминированные системы – системы, в которой связи между элементами и событиями носят однозначный, предопределенный характер. 9. Вероятностная (стохастическая) система – такая система, в которой связи между элементами и событиями носят неоднозначный характер. Связи между элементами носят вероятностный характер и существуют в виде вероятностных закономерностей. 10. Детерминированные системы являются частным случаем вероятностных (Рв=1). 11. Динамичная система – система, характер которой непрерывно меняется. При этом переход в новое состояние не может совершаться мгновенно, а требует некоторого времени.

Этапы построения систем: постановка цели, декомпозиция цели на подцели, определение функций, обеспечивающих достижение цели, синтез структуры, обеспечивающий выполнение функций. Цели возникают, когда существует так называемая проблемная ситуация (проблемная ситуация – это ситуация, которую нельзя разрешить имеющимися средствами). Цель – состояние, к которому направлена тенденция движения объекта. Среда – совокупность всех систем, кроме той, которая реализует заданную цель. Ни одна система не является абсолютно замкнутой. Взаимодействие системы со средой реализуется через внешние связи. Элемент системы – часть системы, имеющая определенное функциональное значение. Связи могут быть входными и выходными. Они подразделяются на: информационные, ресурсные (управляющие).

Структура системы : представляет собой устойчивую упорядоченность элементов системы и их связей в пространстве и во времени. Структура может быть материальной и формальной. Формальная структура – совокупность функциональных элементов и их отношений, необходимых и достаточных для достижения системой заданных целей. Материальная структура – реальное наполнение формальной структуры.Типы структур систем: последовательный или цепочечный; иерархический; циклически замкнутая (типа кольцо); структура типа «колесо»; «звезда»; структура типа «решетка».

Сложная система характеризуется : единой целью функционирования; иерархической системой управления; большим количеством связей внутри системы; комплексным составом системы; устойчивостью к воздействию внешних и внутренних воздействующих факторов; наличием элементов саморегуляции; наличием подсистем.

Свойства сложных систем : 1. Многоуровневость (часть системы сама является системой. Вся система, в свою очередь, является частью более крупной системы); 2. Наличие внешней среды (всякая система ведет себя в зависимости от того, в какой внешней среде она находится. Нельзя механически распространять выводы, полученные о системе в одних внешних условиях, на ту же систему, находящуюся в других внешних условиях); 3. Динамичность (в системах нет ничего неизменного. Все константы и статические состояния - это только абстракции, справедливые в ограниченных пределах); 4. У человека, длительное время работавшего с какой-либо сложной системой, может сложиться уверенность, что те или иные "очевидные" изменения, если их внести в систему, приведут к тем или иным "очевидным" улучшениям. Когда же изменения реализуются, система отвечает совсем не так, как предполагалось. Это случается при попытках реформы управления большим предприятием, при реформировании государства и т.д. Причиной подобных ошибок является недостаток информации о системе как результат неосознанного механистического подхода. Методологический вывод по таким ситуациям состоит в том, что сложные системы не меняются за один круг, нужно совершить много кругов, на каждом из которых в систему вносятся небольшие изменения, и выполняются исследования их результатов с обязательными попытками выявления и анализа новых типов связей, проявляющихся в системе; 5. Устойчивость и старение (устойчивость системы - это ее способность компенсировать внешние или внутренние воздействия, направленные на разрушение или быстрое изменение системы. Старение - это ухудшение эффективности и постепенное разрушение системы за длительный период времени. 6. Целостность (система имеет целостность, которая есть самостоятельная новая сущность. Эта сущность само организуется, влияет на части системы и на связи между ними, заменяет их для сохранения себя как целостности, ориентируется во внешней среде и т.д.); 7. Полиструктурность - это наличие у одной и той же системы большого количества структур. Рассматривая систему с разных точек зрения, мы будем выявлять в ней разные структуры. Полиструктурность систем можно рассматривать как их многоаспектность. Функциональный аспект отражает поведение системы и ее частей только с точки зрения того, что они делают, какую исполняют функцию. При этом не принимаются во внимание вопросы о том, как они это делают и что они из себя представляют физически. Важно только лишь, чтобы из функций отдельных частей складывалась функция системы в целом. Конструкторский аспект охватывает только вопросы физической компоновки системы. Здесь важна форма составных частей, их материал, их размещение и стыковка в пространстве, внешний вид системы. Технологический аспект отражает то, как исполняются функции частями системы.



 

Возможно, будет полезно почитать: