Ионизирующие вещества. Реферат: Ионизирующие излучения

Радиоактивное излучение (или ионизирующее) – это энергия, которая высвобождается атомами в форме частиц или волн электромагнитной природы. Человек подвергается такому воздействию как через природные, так и через антропогенные источники.

Полезные свойства излучения позволили успешно использовать его в промышленности, медицине, научных экспериментах и исследованиях, сельском хозяйстве и других областях. Однако с распространением применения этого явления возникла угроза здоровью людей. Малая доза радиоактивного облучения способна повысить риск приобретения серьёзных заболеваний.

Отличие радиации от радиоактивности

Радиация, в широком смысле, означает излучение, то есть распространение энергии в виде волн или частиц. Радиоактивные излучения делят на три вида:

  • альфа-излучение – поток ядер гелия-4;
  • бета-излучение – поток электронов;
  • гамма-излучение – поток высокоэнергетических фотонов.

Характеристика радиоактивных излучений основана на их энергии, пропускных свойствах и виде испускаемых частиц.

Альфа-излучение, которое представляет собой поток корпускул с положительным зарядом, может быть задержано толщей воздуха или одеждой. Этот вид практически не проникает через кожный покров, но при попадании в организм, например, через порезы, очень опасен и пагубно действует на внутренние органы.

Бета-излучение обладает большей энергией – электроны движутся с высокой скоростью, а их размеры малы. Поэтому данный вид радиации проникает через тонкую одежду и кожу глубоко в ткани. Экранировать бета-излучение можно при помощи алюминиевого листа в несколько миллиметров или толстой деревянной доски.

Гамма-излучение – это высокоэнергетическое излучение электромагнитной природы, которое обладает сильной проникающей способностью. Для защиты от него нужно использовать толстый слой бетона или пластину из тяжёлых металлов таких, как платина и свинец.

Феномен радиоактивности был обнаружен в 1896 году. Открытие сделал французский физик Беккерель. Радиоактивность – способность предметов, соединений, элементов испускать ионизирующее изучение, то есть радиацию. Причина явления заключается в нестабильности атомного ядра, которое при распаде выделяет энергию. Существует три вида радиоактивности:

  • естественная – характерна для тяжёлых элементов, порядковый номер которых больше 82;
  • искусственная – инициируется специально с помощью ядерных реакций;
  • наведённая – свойственна объектам, которые сами становятся источником радиации, если их сильно облучить.

Элементы, обладающие радиоактивностью, называют радионуклидами. Каждый из них характеризуется:

  • периодом полураспада;
  • видом испускаемой радиации;
  • энергией радиации;
  • и другими свойствами.

Источники радиации

Человеческий организм регулярно подвергается действию радиоактивного излучения. Приблизительно 80% ежегодно получаемого количества приходится на космические лучи. В воздухе, воде и почве содержатся 60 радиоактивных элементов, являющихся источниками естественной радиации. Основным природным источником излучения считается инертный газ радон, высвобождающийся из земли и горных пород. Радионуклиды также проникают в организм человека с пищей. Часть ионизирующего облучения, которому подвергаются люди, исходит от антропогенных источников, начиная от атомных генераторов электричества и ядерных реакторов до используемой для лечения и диагностики радиации. На сегодняшний день распространёнными искусственными источниками излучения являются:

  • медицинское оборудование (основной антропогенный источник радиации);
  • радиохимическая промышленность (добыча, обогащение ядерного топлива, переработка ядерных отходов и их восстановление);
  • радионуклиды, применяющиеся в сельском хозяйстве, лёгкой промышленности;
  • аварии на радиохимических предприятиях, ядерные взрывы, радиационные выбросы
  • строительные материалы.

Радиационное облучение по способу проникновения в организм делится на два типа: внутреннее и внешнее. Последнее характерно для распылённых в воздухе радионуклидов (аэрозоль, пыль). Они попадают на кожу или одежду. В таком случае источники радиации можно удалить, смыв их. Внешнее же облучение вызывает ожоги слизистых оболочек и кожных покровов. При внутреннем типе радионуклид попадает в кровоток, например, введением в вену или через раны, и удаляется путём экскреции или с помощью терапии. Такое облучение провоцирует злокачественные опухоли.

Радиоактивный фон существенно зависит от географического положения – в некоторых регионах уровень радиации может превышать средний в сотни раз.

Влияние радиации на здоровье человека

Радиоактивное излучение из-за ионизирующего действия приводит к образованию в организме человека свободных радикалов – химически активных агрессивных молекул, которые вызывают повреждение клеток и их гибель.

Особенно чувствительны к ним клетки ЖКТ, половой и кроветворной систем. Радиоактивное облучение нарушает их работу и вызывает тошноту, рвоту, нарушение стула, температуру. Воздействуя на ткани глаза, оно может привести к лучевой катаракте. К последствиям ионизирующего излучения также относят такие повреждения, как склероз сосудов, ухудшение иммунитета, нарушение генетического аппарата.

Система передачи наследственных данных имеет тонкую организацию. Свободные радикалы и их производные способны нарушать структуру ДНК – носителя генетической информации. Это приводит к возникновению мутаций, которые сказываются на здоровье последующих поколений.

Характер воздействия радиоактивного излучения на организм определяется рядом факторов:

  • вид излучения;
  • интенсивность радиации;
  • индивидуальные особенности организма.

Результаты радиоактивного излучения могут проявиться не сразу. Иногда его последствия становятся заметны через значительный промежуток времени. При этом большая однократная доза радиации более опасна, чем долговременное облучение малыми дозами.

Поглощённое количество радиации характеризуется величиной, называемой Зиверт (Зв).

  • Нормальный радиационный фон не превышает 0,2 мЗв/ч, что соответствует 20 микрорентгенам в час. При рентгенографии зуба человек получает 0,1 мЗв.
  • Смертельная разовая доза составляет 6-7 Зв.

Применение ионизирующих излучений

Радиоактивное излучение широко применяется в технике, медицине, науке, военной и атомной промышленности и других сферах человеческой деятельности. Явление лежит в основе таких устройств, как датчики задымления, генераторы электроэнергии, сигнализаторы обледенения, ионизаторы воздуха.

В медицине радиоактивное излучение используется в лучевой терапии для лечения онкологических заболеваний. Ионизирующая радиация позволила создать радиофармацевтические препараты. С их помощью проводят диагностические обследования. На базе ионизирующего излучения устроены приборы для анализа состава соединений, стерилизации.

Открытие радиоактивного излучения было без преувеличения революционным – применение этого явления вывело человечество на новый уровень развития. Однако это также стало причиной возникновения угрозы экологии и здоровью людей. В связи с этим поддержание радиационной безопасности является важной задачей современности.

Ионизирующее излучение – вид радиации, которая у всех ассоциируется исключительно со взрывами атомных бомб и авариями на АЭС.

Однако на деле ионизирующее излучение окружает человека и представляет собой естественный радиационный фон: оно образуется в бытовых приборах, на электрических вышках и т.д. При воздействии с источниками происходит облучение человека данным излучением.

Стоит ли бояться серьезных последствий – лучевой болезни или поражения органов?

Сила действия излучения зависит от продолжительности контакта с источником и его радиоактивности. Бытовые приборы, создающие незначительный «шум», не опасны для человека.

Но некоторые типы источников могут нанести серьезный вред организму. Чтобы предотвратить негативное воздействие, нужно знать базовую информацию: что такое ионизирующее излучение и откуда оно исходит, а также как влияет на человека.

Ионизирующее излучение возникает при распаде радиоактивных изотопов.

Таких изотопов множество, они используются в электронике, атомной промышленности, добыче энергии:

  1. уран-238;
  2. торий-234;
  3. уран-235 и т.д.

Изотопы радиоактивного характера естественным образом распадаются с течением времени. Скорость распада зависит от вида изотопа и исчисляется в периоде полураспада.

По истечению определенного срока времени (у одних элементов этом могут быть несколько секунд, у других – сотни лет) количество радиоактивных атомов снижается ровно вдвое.

Энергия, которая высвобождается при распаде и уничтожении ядер, высвобождается в виде ионизирующего излучения. Оно проникает в различные структуры, выбивая из них ионы.

Ионизирующие волны основаны на гамма-излучении, измеряются в гамма-квантах. Во время передачи энергии не выделяются никакие частицы: атомы, молекулы, нейтроны, протоны, электроны или ядра. Воздействие ионизирующего излучения чисто волновое.

Проникающая способность излучения

Все виды разнятся по проникающей способности, то есть способность быстро преодолевать расстояния и проходить сквозь различные физические преграды.

Наименьшим показателем отличается альфа-излучение, а в основе ионизирующего излучения лежат гамма-лучи – самые проникающие из трех типов волн. При этом альфа-излучение оказывает самое отрицательное действие.

Что отличает гамма-излучение?

Оно опасно из-за следующих характеристик:

  • распространяется со скоростью света;
  • проходит через мягкие ткани, дерево, бумагу, гипсокартон;
  • останавливается только толстым слоем бетона и металлическим листом.

Для задержки волн, которыми распространяется данное излучение, на АЭС ставят специальные коробы. Благодаря им радиации не может ионизировать живые организмы, то есть нарушать молекулярную структуру людей.

Снаружи коробы состоят из толстого бетона, внутренняя часть обита листом чистого свинца. Свинец и бетон отражают лучи или задерживают их в своей структуре, не позволяя распространиться и нанести вред живому окружению.

Виды источников радиации

Мнение, что радиация возникает только в результате жизнедеятельности человека, ошибочно. Слабый радиационный фон есть почти у всех живых объектов и у самой планеты соответственно. Поэтому избежать ионизирующего излучения очень сложно.

На основе природы возникновения все источники делятся на природные и антропогенные. Наиболее опасны антропогенные, такие, как выброс отходов в атмосферу и водоемы, аварийная ситуация или действие электроприбора.

Опасность последнего источника спорна: считается, что небольшие излучающие устройства не создают серьезной угрозы для человека.

Действие индивидуально: кто-то может почувствовать ухудшение самочувствия на фоне слабого излучения, другой же индивид окажется абсолютно не подвержен естественному фону.

Природные источники радиации

Основную опасность для человека представляют минеральные породы. В их полостях скапливается наибольшее количество незаметного для человеческих рецепторов радиоактивного газа – радона.

Он естественным образом выделяется из земной коры и плохо регистрируется проверочными приборами. При поставке строительных материалов возможен контакт с радиоактивными породами, и как результат – процесс ионизации организма.

Опасаться следует:

  1. гранита;
  2. пемзы;
  3. мрамора;
  4. фосфогипса;
  5. глинозема.

Это наиболее пористые материалы, которые лучше всего задерживают в себе радон. Данный газ выделяется из строительных материалов или грунта.

Он легче воздуха, поэтому поднимается на большую высоту. Если вместо открытого неба над землей обнаружено препятствие (навес, крыша помещения), газ будет скапливаться.

Большая насыщенность воздуха его элементами приводит к облучению людей, компенсировать которое можно только выведением радона из жилых зон.

Чтобы избавиться от радона, требуется начать простое проветривание. Нужно стараться не вдыхать воздух в том помещении, где произошло заражение.

Регистрация возникновения скопившегося радона осуществляется только при помощи специализированных симптомов. Без них сделать вывод о скоплении радона можно только на основе не специфичных реакций человеческого организма (головная боль, тошнота, рвота, головокружение, потемнение в глазах, слабость и жжение).

При обнаружении радона вызывается бригада МЧС, которая устраняет радиацию и проверяет эффективность проведенных процедур.

Источники антропогенного происхождения

Другое название созданных человеком источников – техногенные. Основной очаг излучения – АЭС, расположенные по всему миру. Нахождение в зонах станций без защитной одежды влечет за собой начало серьезных заболеваний и летальный исход.

На расстоянии нескольких километров от АЭС риск сводится к нулю. При правильной изоляции все ионизирующие излучения остаются внутри станции, и можно находиться в непосредственной близости от рабочей зоны, при этом не получая никакой дозы облучения.

Во всех сферах жизнедеятельности можно столкнуться с источником излучения, даже не проживая в городе близ АЭС.

Искусственная ионизирующая радиация повсеместно используется в различных отраслях:

  • медицине;
  • промышленности;
  • сельском хозяйстве;
  • наукоемких отраслях.

Однако получить облучение от аппаратов, которые изготавливаются для данных отраслей, невозможно.

Единственное, что допустимо – минимальное проникновение ионных волн, которое не наносит вреда при малой продолжительности воздействия.

Радиоактивные осадки

Серьезная проблема современности, связанная с недавними трагедиями на АЭС – распространение радиоактивных дождей. Выбросы в атмосферу радиации заканчиваются накоплением изотопов в атмосферной жидкости – облаках. При переизбытке жидкости начинаются осадки, которые представляют серьезную угрозу для сельскохозяйственных культур и человека.

Жидкость впитывается в земли сельскохозяйственных угодий, где произрастает рис, чай, кукуруза, тростник. Данные культуры характерны для восточной части планеты, где наиболее актуальна проблема радиоактивных дождей.

Ионное излучение оказывает меньшее воздействие на другие части света, потому что осадки не доходят до Европы и островных государств в области Великобритании. Однако в США и Австралии дожди иногда проявляются радиационные свойства, поэтому при покупке овощей и фруктов оттуда нужно проявлять осторожность.

Радиоактивные осадки могут выпадать над водоемами, и тогда жидкость по каналам водоочистки и водопроводным системам может попасть в жилые дома. Очистные сооружения не обладают достаточной для снижения радиации аппаратурой. Всегда есть риск, что принимаемая вода – ионная.

Как обезопасить себя от радиации

Прибор, который измеряет, есть ли в фоне продукта ионные излучения, находится в свободном доступе. Его можно приобрести за небольшие деньги и использовать для проверки покупок. Название проверочного устройства – дозиметр.

Вряд ли домохозяйка будет проверять покупки прямо в магазине. Обычно мешает стеснение перед посторонними. Но хотя бы дома те продукты, что поступили из подверженных радиоактивным дождям зон, нужно проверять. Достаточно поднести счетчик к предмету, и он покажет уровень испускания опасных волн.

Влияние ионизирующего излучения на человеческий организм

Научно доказано, что радиация оказывает на человека отрицательное действие. Это было выяснено и на реальном опыте: к сожалению, аварии на Чернобыльской АЭС, в Хиросиме и т.д. доказали биологическую и излучения.

Влияние радиации основано на полученной «дозе» — количестве переданной энергии. Радионуклид (испускающий волны элементы) может оказывать влияние как изнутри, так и снаружи организма.

Полученная доза измеряется в условных единицах – Греях. Нужно учитывать, что доза может быть равной, а вот влияние радиации – разным. Это связано с тем, что различные излучения вызывают разные по силе реакции (самая выраженная у альфа-частиц).

Также на силу воздействия влияет и то, на какую часть организма пришлось попадание волн. Наиболее подвержены структурным изменениям половые органы и легкие, меньше – щитовидная железа.

Результат биохимического воздействия

Радиация влияет на структуру клеток организма, вызывая биохимические изменения: нарушения в циркуляции химических веществ и в функциях организма. Влияние волн проявляется постепенно, а не сразу после облучения.

Если человек попал под допустимую дозу (150 бэр), то отрицательные эффекты не будут выражены. При большем облучении ионизационный эффект увеличивается.

Естественное излучение равно примерно в 44 бэр в год, максимум – 175. Максимальное число лишь немного выходит за рамки нормы и не вызывает отрицательных изменений в организме, кроме головных болей или слабой тошноты у гиперчувствительных людей.

Естественное излучение складывается на основе радиационного фона Земли, употребления зараженных продуктов, использования техники.

Если доля превышена, развиваются следующие заболевания:

  1. генетические изменения организма;
  2. нарушения половой функции;
  3. раковые образования мозга;
  4. дисфункции щитовидной железы;
  5. рак легких и дыхательной системы;
  6. лучевая болезнь.

Лучевая болезнь является крайней стадией всех связанных с радионуклидами заболеваний и проявляется лишь у тех, кто попал в зону аварии.

2.1. Ионизирующее излучение

Ионизирующее излучение - это любое излучение, взаимодействие которого со средой приводит к образованию электрических зарядов разных знаков.

Действие ионизирующих излучений на людей и животных заключается в разрушении живых клеток организма, которое может привести к различной степени заболеваниям, а в некоторых случаях и к смерти. Чтобы оценить влияние ионизирующих излучений на человека (животное), надо учитывать две основных характеристики: ионизирующую и проникающую способности. Давайте рассмотрим эти две способности для альфа-, бета-, гамма- и нейтронного излучений.

Рисунок 13 - Виды ионизирующего излучения

Альфа-излучение представляет собой поток ядер гелия с двумя положительными зарядами. Ионизирующая способность альфа-излучений в воздухе характеризуется образованием в среднем 30 тыс. пар ионов на 1 см. пробега. Это очень много. В этом главная опасность данного излучения. Проникающая способность, наоборот, очень не велика. В воздухе альфа-частицы пробегают всего 10 см. Их задерживает обычный лист бумаги. Бета-излучение представляет собой поток электронов или позитронов со скоростью, близкой к скорости света. Ионизирующая способность невелика и составляет в воздухе 40 - 150 пар ионов на 1 см. пробега. Проникающая способность намного выше, чем у альфа-излучения, и достигает в воздухе 20 см.

Гамма-излучение представляет собой электромагнитное излучение, которое распространяется со скоростью света. Ионизирующая способность в воздухе - всего несколько пар ионов на 1 см. пути. А вот проникающая способность очень велика - в 50 - 100 раз больше, чем у бета-излучения и составляет в воздухе сотни метров.

Нейтронное излучение - это поток нейтральных частиц, летящих со скоростью 20 - 40 тыс. км/с. Ионизирующая способность составляет несколько тысяч пар ионов на 1 см. пути. Проникающая способность чрезвычайно велика и достигает в воздухе нескольких километров. Рассматривая ионизирующую и проникающую способность, можно сделать вывод. Альфа-излучение обладает высокой ионизирующей и слабой проникающей способностью. Обыкновенная одежда полностью защищает человека. Самым опасным является попадание альфа-частиц во внутрь организма с воздухом, водой и пищей. Бета-излучение имеет меньшую ионизационную способность, чем альфа-излучение, но большую проникающую способность. Одежда уже не может полностью защитить, нужно использовать любое укрытие. Это будет намного надежней. Гамма- и нейтронное излучение обладают очень высокой проникающей способностью, защиту от них могут обеспечить только убежища, противорадиационные укрытия, надежные подвалы и погреба.

2.1.1.Единицы измерений

По мере открытий учеными радиоактивности и ионизирующих излучений стали появляться и единицы их измерений. Например: рентген, кюри. Но они не были связаны какой-либо системой, а потому и называются внесистемными единицами. Во всем мире сейчас действует единая система измерений - СИ (система интернациональная). У нас она подлежит обязательному применению с 1 января 1982 г. К 1 января 1990 г. этот переход надо было завершить. Но в связи с экономическими и другими трудностями процесс затягивается. Однако вся новая аппаратура, в том числе и дозиметрическая, как правило, градуируется в новых единицах.

2.1.2Единицы радиоактивности

В качестве единицы активности принято одно ядерное превращение в секунду. В целях сокращения используется более простой термин - один распад в секунду (расп./с) В системе СИ эта единица получила название беккерель (Бк). В практике радиационного контроля, в том числе и в Чернобыле, до последнего времени широко использовалась внесистемная единица активности - кюри (Ки). Один кюри - это 3,7 * 1010 ядерных превращений в секунду.

Концентрация радиоактивного вещества обычно хорактеризуются концентрацией его активности. Она выражается в единицах активности на единицу массы: Ки/т, мКи/г, кБк/кг и т.п.(удельная активность). На единицу объема: Ки/мЗ, мКи/л, Бк/ смЗ. и т.п. (объемная концентрация) или на единицу площади: Ки/кмЗ, мКи/с м2., ПБк/ м2. и т.п.

2.1.3.Единицы ионизирующих излучений

Для измерения величин, характеризующих ионизирующее излучение, исторически первой появилась единица «рентген». Эта мера экспозиционной дозы рентгеновского или гамма-излучений. Позже для измерения поглощенной дозы излучений добавили «рад».

Доза излучения (поглощенная доза) - энергия радиоактивного излучения, поглощенная в единице облучаемого вещества или человеком. С увеличением времени облучения доза растет. При одинаковых условиях облучения она зависит от состава вещества. Поглощенная доза нарушает физиологические процессы в организме и приводит в ряде случаев к лучевой болезни различной степени тяжести. В качестве единицы поглощенной дозы излучения в системе СИ предусмотрена специальная единица - грей (Гр). 1 грей - это такая единица поглощенной дозы, при которой 1 кг. Облучаемого вещества поглощает энергию в 1 джоуль (Дж). Следовательно 1 Гр = 1 Дж/кг. Поглощенная доза излучения является физической величиной, определяющей степень радиационного воздействия.

Мощность дозы (мощность поглощенной дозы) - приращение дозы в единицу времени. Она характеризуется скоростью накопления дозы и может увеличиваться или уменьшаться во времени. Ее единица в системе Си - грей в секунду. Эта такая мощность поглощенной дозы излучения, при которой за 1 с. в веществе создается доза излучения в 1 Гр. На практике для оценки поглощенной дозы излучения до сих пор широко используют внесистемную единицу мощности поглощенной дозы - рад в час (рад/ч) или рад в секунду (рад/с).

Эквивалентная доза. Это понятие введено для количественного учета неблагоприятного биологического воздействия различных видов излучений. Определяется она по формуле Дэкв=С>*Д, где Д - поглощенная доза данного вида излучения, Q - коэффициент качества излучения, который для различных видов ионизирующих излучений с неизвестным спектральным составом принят для рентгеновского и гамма-излучения-1, для бета-излучения-1, для нейтронов с энергией от 0,1 до 10 МэВ-10, для альфа-излучений с энергией менее 10 МэВ-20. Из приведенных цифр видно, что при одной и той же поглощенной дозе нейтронное и альфа-излучение вызывают, соответственно, в 10 и 20 раз больший поражающий эффект. В системе СИ эквивалентная доза измеряется в зивертах (Зв). Зиверт равен одному грею, деленному на коэффициент качества. При Q = 1 получаем

1 Зв = 1 Гр = 1 Дж/к = 100 рад = 100 бэр.

Бэр (биологический эквивалент рентгена) - это внесистемная единица эквивалентной дозы, такая поглощенная доза любого излучения, которая вызывает тот же биологический эффект, что и 1 рентген гамма-излучения..

Поскольку коэффициент качества бета и гамма-излучений равен 1, то на местности, загрязненной радиоактивными веществами при внешнем облучении 1 Зв = 1 Гр; 1 бэр = 1 рад; 1 рад «1 Р.

Из этого можно сделать вывод, что эквивалентная, поглощенная и экспозиционные дозы для людей, находящихся в средствах защиты на зараженной местности, практически равны.

Мощность эквивалентной дозы - отношение приращения эквивалентной дозы за какой-то интервал времени. Выражается в зивертах в секунду. Поскольку время пребывания человека в поле излучения при допустимых уровнях измеряется, как правило, часами, предпочтительно выражаясь мощность эквивалентной дозы в микрозивертах в час. Согласно заключению Международной комиссии по радиационной защите, вредные эфекты у человека могут наступать при эквивалентных дозах не менее 1,5 Зв/год (150 бэр/год), а в случаях кратковременного облучения - при дозах выше 0,5 Зв (50 бэр). Когда облучение превышает некоторый порог, возникает лучевая болезнь.

Мощность эквивалентной дозы, создаваемая естественным излучением (земного и космического происхождения), колеблется в пределах 1,5-2 мЗв/год и плюс искусственные источники (медицина, радиоактивные осадки) от 0,3 до 0,5 мЗв/год. Вот и выходит, что человек в год получает от 2 до 3 мЗв. Эти цифры примерные и зависят от конкретных условий. По другим источникам, они выше и доходят до 5 мЗв/год.

Экспозиционная доза - мера ионизационного действия фотонного излучения, определяемая по ионизации воздуха в условиях электронного равновесия.

В СИ единицей экспозиционной дозы является один кулон на килограмм (Кл/кг). Внесистемной единицей является рентген (Р), 1Р -2,58* 10-4 Кл/кг. В свою очередь 1 Кл/кг « 3,876* 103 Р. Для удобства в работе при перерасчете числовых значений экспозиционной дозы из одной системы единиц в другую обычно пользуются таблицами, имеющимися в справочной литературе.

Мощность экспозиционной дозы - приращение экспозиционной дозы в единицу времени. Ее единица в системе СИ - ампер на килограмм (А/кг). Однако в переходный период можно пользоваться внесистемной единицей -рентген в секунду (Р/с).

1 Р/с = 2,58*10-4 А/кг

Надо помнить, что после 1 января 1990 г. не рекомендуется вообще пользоваться понятием экспозиционной дозы и ее мощности. Поэтому во время переходного периода эти величины следует указывать не в единицах СИ (Кл/кг, А/кг), а во внесистемных единицах - рентгенах и рентгенах в секунду.

1 Зв=1Гр * 100 рад * 100 бэр « 100Р.

Производственные единицы зиверта: Миллизиверт (мЗв): 1 мЗв= 10-ЗЗв;

Микрозиверт (мкЗв): 1 мкЗв - 10-6 Зв.

2.2.Источники ионизирующего излучения

В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна). Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют альфа-, бета- и гамма-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное рентгеновское излучение).

2.3.Действие ионизирующей радиации на живой организм

Для человека в космосе значительную опасность представляет радиация. Защита от нее требуется сразу же, как только останутся позади окружающие Землю атмосфера и магнитные поля. Радиационное излучение в космосе - это поток заряженных и незаряженных частиц и электромагнитного излучения. Такие же условия существуют на Луне, лишенной атмосферы и магнитного поля. В космическом полете наиболее опасна ионизирующая радиация, к которой относятся рентгеновские лучи и гамма-излучение Солнца, частицы, образующиеся во время солнечных (хромосферных) вспышек, солнечный ветер, солнечные, галактические и внегалактические космические лучи, электроны и протоны радиационных поясов, нейтроны и альфа-частицы. К неионизирующей радиации относится инфракрасное и ультрафиолетовое излучения Солнца, видимый свет и электромагнитное излучение радиочастотного диапазона. Эти виды излучения не представляют большой опасности для космонавта, так как сквозь обшивку космического корабля или оболочку скафандра они не проникают.

Рисунок 14 - При космическом излучении частицы с высокой энергией, проникающей в ткани тела и теряя свою энергию, ионизируют атомы вдоль

пути пробега и таким образом разрушают клетки ткани. На микрофотографии показан след частицы с атомным номером Z=24±2 [титан,ванадий, хром, марганец или железо]

Ионизирующая радиация оказывает вредное воздействие на протекающие в клетках человеческого организма жизненные процессы. При прохождении частиц высокой энергии, или фотонов, через вещество на их пути в результате взаимодействия с атомами вещества образуются пары заряженных частиц - ионы. Отсюда и название - ионизирующая радиация. Типичный путь (трек) прохождения через вещество тяжелой ионизирующей частицы (атомный номер Z = 24±2) первичного космического излучения представлен на помещенной выше микрофотографии. На биологическом объекте действие ионизирующей радиации сказывается в значительно большей степени, чем на неживом веществе. Живая ткань представляет собой организацию высокоспециализированных клеток, которые постоянно обновляются. Их обновление - процесс динамический. Неживые


мозга.

Механизм радиационных поражений весьма разнообразен и до конца не ясен. Очевидно, часть радиационных поражений связана с механическим

повреждением (разрывом) важных в биологическом отношении молекулярных структур, таких, например, как хромосомы, а часть - со сложными химическими процессами. Первоначально незаряженные осколки молекул превращаются в высокоактивные радикалы, такие, как ОН, НОг и Н.

Они могут рекомбинироваться в Н 2 0 2 или вступать в реакцию с

органическими веществами клетки, нарушая клеточный метаболизм.

Таким образом, вероятно, можно сказать, что радиационное поражение клеток происходит как в результате непосредственного повреждения молекул биологически важных веществ (например, дезоксирибонуклеиновой кислоты), так и вследствие вторичных химических реакций внутри ядра и протоплазмы. Схема радиационного поражения клетки представлена на рисунке, приведенном на рисунке 4.

Радиация оказывает влияние и на воспроизводительные функции организма, нередко вызывая изменение в генетическом аппарате. О том, в каких формах это может проявляться, выдвинуто немало предположений. По-видимому, существует реальная опасность мутаций в результате изменений в хромосомном аппарате. В зависимости от поглощенной дозы излучения может наступить и бесплодие.

Ценные материалы дает изучение генетических поражений, вызванных радиацией, у животных; однако результаты этих исследований, проводимых главным образом в лабораторных условиях, нельзя переносить на человека, тем более что в условиях космического пространства возникают еще и синергетические эффекты. В лаборатории в Лос-Аламосе (штат Нью-Мексико) проводилось облучение каждого из 25 последовательных поколений мышей-самцов, доза облучения в 6000 раз превышала обычный для земных условий радиационный фон. В результате этого эксперимента было установлено сокращение числа особей в каждом помете, увеличение числа мертворожденных и случаев рождения особей с водянкой головного мозга; снизилась и выносливость потомства по отношению к стрессовым физическим нагрузкам. На советском искусственном спутнике Земли «Космос-ПО» был проведен длительный медико-биологический эксперимент на двух собаках (самцах, которые находились в условиях орбитального полета в течение 22 дней. После этого у собак обнаружили от 30 до 70% аномальных сперматозоидов, в то время как у контрольных животных количество таких сперматозоидов составило 10-15%. Однако, несмотря на это, собаки, побывавшие в космосе, дали здоровое потомство. Мы имеем мало данных относительно уровней ионизирующей радиации, которой может подвергнуться космический корабль. Все они основываются на результатах экспериментов, полученных во время непродолжительных орбитальных полетов вокруг Земли. Поэтому установить требования к защите от радиации при продолжительных и дальних космических полетах необычайно трудно. Тем не менее, на основании медико-биологических исследований и предполагаемых уровней радиации, существующих в космосе, были определены предельно допустимые дозы радиации для космонавтов, участвующих в выполнении программы «Аполлон». Эти предельно допустимые дозы составляют 980 бэр для ступней ног, лодыжек (голеностопных суставов) и кистей рук, 700 бэр для кожного покрова (всего тела), 200 бэр для кроветворных органов и 200 бэр для глаз. Результаты экспериментов на растениях и других биологических объектах, которые проводились на американском спутнике для биологических исследований космического пространства «Биос-2», запущенном 7 сентября 1967 года, показали, что в условиях невесомости влияние радиации усиливается (синергизм). Если эти данные подтвердятся, то опасность космической радиации для человека, вероятно, окажется большей, чем предполагалось первоначально. Вероятно, она будет более губительна для молодых быстро делящихся клеток или для активных половых клеток. После определения эффекта от совместного воздействия невесомости и радиации на дрозофил (плодовых мушек), мучных жучков, ос, оранжевую хлебную плесень и другие биологические объекты, имевшиеся в капсуле «Биос-2», ученые пришли к выводу, что в условиях космоса живой организм более чувствителен к радиации, чем на Земле.

Лучший способ ослабить ионизирующую радиацию - это поглотить ее энергию при прохождении через толщу какого-либо вещества. Поэтому проблема защиты космонавта от радиации сводится к изысканию наиболее эффективного экранирующего материала, при этом не следует забывать о требованиях минимального веса. Идеальная защита от радиации должна иметь эффективную плотность земной атмосферы, то есть 1000 г/см, и такое же магнитное поле, как вокруг земного шара в районе экватора. Для создания эквивалентной защиты от радиации в космосе потребовался бы слой воды толщиной около 10 м или свинцовый экран толщиной около 1 м. Насколько сложна проблема защиты от радиации, видно из графика. На нем показано, какие дозы (в относительных единицах) получат космонавты внутри космического корабля при облучении ионизирующими частицами нескольких видов (первичные протоны, вторичные протоны и нейтроны) в случае использования защитного алюминиевого экрана различной толщины.

Увеличение веса экранов не поможет решить проблему, так как при прохождении электронов высоких энергий через металлы генерируется рентгеновское излучение (явление, известное как «тормозное излучение»). Когда корабль проходит через магнитные пояса, в нем возникают мощные потоки вторичной радиации. Другого рода вторичная радиация (потоки мезонов, каскадных и испарительных нейтронов, а также протонов отдачи) возникает в результате ядерных взаимодействий в экранирующем материале. Все эти виды вторичной радиации представляют потенциальную опасность для космонавтов. Если эта опасность велика, для защиты от вторичной радиации в будущих космических кораблях придется делать внутренние экраны. Может быть, вокруг космического корабля будут создаваться искусственные магнитные поля, которые защитят корабль подобно тому, как Землю защищают окружающие ее магнитные пояса

Корпус корабля «Аполлон», сделанный в основном из алюминия, нержавеющейстали и фенольно-эпоксидных смол, создает экран плотностью

7,5 г/см2. Такого экрана достаточно для защиты трех космонавтов от обычной солнечной радиации. Самая мощная из зарегистрированных до сих пор солнечных вспышек создала бы для космонавтов внутри этого корабля дозу облучения всего лишь в 70 mrad. Лунный же модуль корабля «Аполлон» имеет экран плотностью всего лишь 1,5 г/см 2 , который для защиты космонавтов от таких солнечных вспышек недостаточен. В настоящее время ведутся большие работы по изысканию фармакологических средств защиты человека от облучения. Среди множества исследуемых препаратов можно назвать цистамин, цистеин, глутатион и аминоэтилизотиуроний. Однако применение этих препаратов в силу ряда причин не дает особенно эффективных результатов. Дело в том, что, во-первых, большинство экспериментов проводилось на животных и в наземных условиях, а во-вторых, такие препараты необходимо вводить в организм человека до начала облучения. Кроме того, существует проблема токсичности этих препаратов. К тому же с помощью фармакологических средств можно обеспечить человеку защиту от рентгеновских лучей и гамма-излучения, но не от сильного ионизирующего излучения альфа-частиц, протонов и быстрых нейтронов.

Следует отметить, что дозы облучения на Луне, вероятно, невелики, но, чтобы не подвергать космонавтов риску облучения во время экспедиций на Луну, необходимы тщательные расчеты по предсказанию солнечных вспышек.

2.3.1.Галактические космические лучи (ГКЛ)

Галактические космические лучи (ГКЛ) состоят из ядер различных химических элементов с кинетической энергией Е более нескольких десятков МэВ/нуклон, а также электронов и позитронов с £>10 МэВ. Эти частицы приходят в межпланетное пространство из межзвёздной среды. Источником этих частиц являются сверхновые звезды нашей Галактики. Возможно, однако, что в области £<100 МэВ/нуклон частицы образуются за счет ускорения в межпланетной среде частиц солнечного ветра и межзвездного газа. Дифференциальный энергетический спектр ГКЛ носит степенной характер.

2.3.2.Радиационные пояса и космические лучи

Радиационные пояса Земли - две области ближайшего околоземного космического пространства, которые в виде замкнутых магнитных ловушек окружают Землю.

Рисунок 18 - Схематическое изображение траектории заряженной частицы в магнитном поле Земли


В них сосредоточены огромные потоки протонов и электронов, захваченных дипольным магнитным полем Земли. Магнитное поле Земли оказывает сильное влияние на электрически заряженные частицы, имеются два основных источника возникновения этих частиц:

Космические лучи, т.е. энергичные (от 1 до 12 ГэВ) электроны, протоны и ядра тяжелых элементов приходящие с почти световыми скоростями, главным образом из других частей Галактики,

Корпускулярные потоки менее энергичных заряженных частиц (105 -106 эВ), выброшенных Солнцем.

В магнитном поле электрические частицы движутся по спирали; траектория частицы как бы навивается на цилиндр, по оси которого проходит силовая линия. Радиус этого воображаемого цилиндра зависит от напряженности поля и энергии частицы. Чем больше энергия частицы, тем при данной напряженности поля радиус (он называется ларморовским) больше. Если ларморовский радиус много меньше, чем радиус Земли, частица не достигает ее поверхности. Она захватывается магнитным полем Земли. Если ларморовский радиус много больше, чем радиус Земли, частица движется так, как будто бы магнитного поля нет, частицы проникают сквозь магнитное поле Земли в экваториальных районах, если их энергия больше 109 эВ. Такие частицы вторгаются в атмосферу и вызывают при столкновении с ее атомами ядерные превращения, которые дают определенные количества вторичных

Рисунок 19 - Исследования первичных космических лучей

космических лучей. Эти вторичные космические лучи уже регистрируются на поверхности Земли.

Магнитное поле Земли удерживает огромное число энергичных частиц, как электронов, так и протонов. Их энергия и концентрация зависят от расстояния до Земли и геомагнитной широты. Частицы заполняют как бы огромные кольца или пояса, охватывающие Землю вокруг геомагнитного экватора.

Потоки электронов и протонов различных энергий в плоскости геомагнитного экватора. R - расстояние от центра Земли, выраженное в радиусах Земли.

Для исследования космических лучей в их первоначальной форме (первичных космических лучей) аппаратуру поднимают на ракетах и искусственных спутниках Земли. Примерно 99% энергичных частиц, «пробивающих» магнитный экран Земли, являются космическими лучами галактического происхождения и лишь около 1% образуется на Солнце.

Новейшие исследования с использованием межпланетных кораблей, орбитальных станций и научной аппаратуры позволили получить важные новые данные о радиационных поясах Земли.

Рисунок 20 - Новые данные о радиационных поясах Земли

Меридиональное сечение радиационного пояса Земли. Оболочки L = 1-3 - внутренняя часть пояса;

L = 3.5 - внешняя часть; L = 1.2-1.5 - стабильный пояс высокоэнергетичных электронов;

L ~ 2 - стабильный пояс ядер аномальной компоненты космических лучей; L ~ 2.6 - квазистабильный пояс.

Обнаружение стационарного пояса электронов высоких энергий.

С помощью аппаратуры, установленной на орбитальной станции «Салют-6», (высота 350 - 400 км, наклонение 52°) в начале 80-х годов были обнаружены стационарные потоки высокоэнергичных электронов.

До этого эксперимента в радиационном поясе Земли были зарегистрированы лишь электроны с энергией не более 5 МэВ (в соответствии с альбедным механизмом возникновения).

Последующие измерения проводились на искусственных спутниках Земли серии «Метеор-3» (высота круговых орбит 800 и 1200 км).

С помощью магнитных спектрометров, установленных на станциях «Салют-7» и «Мир» было доказано, что стабильный пояс состоит только из электронов (без позитронов) высоких энергий (до 200 МэВ).

Это означает, что в магнитосфере Земли реализуется весьма эффективный ускорительный механизм.

Сейсмомагнитосферные связи. Изучение изменений потоков высокоэнергичных захваченных частиц, проведенное на орбитальных станциях «Салют-6», «Мир» и ИСЗ «Метеор», привело к обнаружению нового явления природы, связанного с воздействием сейсмической активности Земли на внутреннюю границу радиационного пояса, -сейсмомагнитосферной связи.

Физическое объяснение этого явления сводится к следующему: из эпицентра предстоящего землетрясения испускается электромагнитное излучение, возникающее из-за механических перемещений подземных пород.

Частотный спектр излучения довольно широкий. Однако достигнуть радиационного пояса Земли, пройдя практически без потерь сквозь земную кору и атмосферу, может только излучение в диапазоне частот -0.1 - 10 Гц. Достигнув нижней границы радиационного пояса Земли, электромагнитное излучение взаимодействует с захваченными электронами и протонами.

Активно участвуют во взаимодействии частицы, привязанные к тем магнитным силовым линиям, которые проходят через эпицентр предстоящего землетрясения.

Если частота осцилляции частиц между зеркальными точками совпадет с частотой сейсмического электромагнитного излучения (СЭМИ), взаимодействие приобретает квазирезонансный характер, проявляющийся в изменении питч-углов захваченных частиц.

Если в зеркальной точке питч-угол частицы станет отличным от 90°, это неизбежно вызовет снижение зеркальной точки, сопровождаемое высыпанием частиц из радиационного пояса.

Из-за долготного дрейфа захваченных частиц, волна высыпания (то есть уход частиц вниз) огибает Землю и вдоль магнитной широты, на которой расположен эпицентр предстоящего землетрясения, образуется кольцо высыпания.

Кольцо может просуществовать 15 - 20 мин, пока все частицы не погибнут в атмосфере. Космический аппарат на орбите, проходящей под радиационным поясом, зарегистрирует всплеск высыпающихся частиц, когда будет пересекать широту эпицентра предстоящего землетрясения. Анализ энергетического и временного распределений частиц в зарегистрированных всплесках позволяет определить место и время прогнозируемого землетрясения. Обнаружение связи между сейсмическими процессами и поведением захваченных частиц в магнитосфере Земли легло в основу разрабатываемого в настоящее время нового метода оперативного прогноза землетрясений.

2.4.Применение ионизирующих излучений

Ионизирующие излучения применяются в различных отраслях тяжёлой (интроскопия) и пищевой (стерилизация медицинских инструментов, расходных материалов и продуктов питания) промышленности, а также в медицине (лучевая терапия, ПЭТ-томография).

Для лечения опухолей используют тяжёлые ядерные частицы такие как протоны, тяжёлые ионы, отрицательные л-мезоны и нейтроны разных

энергий. Создаваемые на ускорителях пучки тяжёлых заряженных частиц имеют малое боковое рассеяние, что дает возможность формировать дозные поля с чётким контуром по границам опухоли

2.4.1.Методы обнаружения и измерения

В результате взаимодействия радиоактивного излучения со внешней средой происходит ионизация и возбуждение ее нейтральных атомов и молекул. Эти процессы изменяют физико-химические свойства облучаемой среды. Взяв за основу эти явления, для регистрации и измерения ионизирующих излучений используют фотографический метод, ионизационный, химический и сцинтилляционный методы.

Фотографический метод. Данный метод основан на степени почернения фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого серебра, содержащегося в фотоэмульсии, распадаются на серебро и бром. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при её проявлении. Плотность почернения пропорциональна поглощенной энергии излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. На этом принципе основаны индивидуальные фотодозиметры.

Ионизационный метод. Сущность его заключается в том, что под воздействием ионизирующих излучений в среде (газовом объеме) происходит ионизация молекул, в результате чего электропроводность этой
среды увеличивается. Если в нее поместить два электрода, к которым приложено постоянное напряжение, то между электродами возникает направленное движение ионов, т.е. Проходит так называемый ионизационный ток, который легко может быть измерен. Такие устройства называют детекторами излучений. В качестве детекторов в дозиметрических приборах используются ионизационные камеры и газоразрядные

счетчики различных типов. Ионизационный метод положен в основу работы таких дозиметрических приборов, как ДП-5А (Б,В), ДП-22В и ИД-1.

Химический метод. Его сущность состоит в том, что молекулы некоторых веществ в результате воздействия ионизирующих излучений распадаются, образуя новые химические соединения. Количество вновь образованных химических веществ можно определить различными способами. Наиболее удобным для этого является способ, основанный на изменении плотности окраски реактива, с которым вновь образованное химическое соединение вступает в реакцию. На этом методе основан принцип работы химического дозиметра гамма- и нейтронного излучения ДП-70 МП.

Сцинтилляционный метод. Этот метод основывается на том, что некоторые вещества (сернистый цинк, йодистый натрий, вольфраматкальция) светятся при воздействии на них ионизирующих излучений. Возникновение свечения является следствием возбуждения атомов под воздействием излучений: при возвращении в основное состояние атомы испускают фотоны видимого света различной яркости (сцинтилляции). Фотоны видимого света улавливаются специальным прибором - так называемым фотоэлектронным умножителем, способным регистрировать каждую вспышку. В основу работы индивидуального измерителя дозы ИД-11 положен сцинтилляционный метод обнаружения ионизирующих излучений.

2.5.Дозиметрические приборы

Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство и включают: воспринимающее устройство (ионизационную камеру или газоразрядный счетчик) 1, усилитель ионизационного тока (электрическая схема, включающая электрометрическую лампу 2, нагрузочное сопротивление 3 и другие элементы), регистрирующее устройство 4 (микроамперметр) и источник питания 5 (сухие элементы или аккумуляторы).

Ионизационная камера представляет собой заполненный воздухом замкнутый объем, внутри которого находятся два изолированных друг от друга электрода (типа конденсатора). К электродам камеры приложено напряжение от источника постоянного тока. При отсутствии ионизирующего излучения в цепи ионизационной камеры тока не будет, поскольку воздух является изолятором. При воздействии же излучений в ионизационной камере молекулы воздуха ионизируются. В электрическом поле положительно заряженные частицы перемещаются к катоду, а отрицательные - к аноду. В цепи камеры возникает ионизационный ток, который регистрируется микроамперметром. Числовое значение ионизационного тока пропорционально мощности излучения. Следовательно, по ионизационному току можно судить о мощности дозы излучений, воздействующих на камеру. Ионизационная камера работает в области насыщения.

Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой.

Газоразрядный счетчик представляет собой полый герметичный металлический или стеклянный цилиндр, заполненный разряженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счетчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счетчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока.

В газоразрядных счетчиках используют принцип усиления газового разряда. В отсутствие радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить об интенсивности радиоактивных излучений.

Дозиметрические приборы предназначаются для:

Контроля облучения - получения данных о поглощенных или экспозиционных дозах излучения людьми и сельскохозяйственными животными;

Контроля радиоактивного заражения радиоактивными веществами людей, сельскохозяйственных животных, а также техники, транспорта, оборудования, средств индивидуальной защиты, одежды, продовольствия, воды, фуража и других объектов;

Радиационной разведки - определения уровня радиации на местности.

Кроме того, с помощью дозиметрических приборов может быть определена наведенная радиоактивность облученных нейтронными потоками различных технических средствах, предметах и грунте. Для радиационной разведки и дозиметрического контроля на объекте используют дозиметры и измерители мощности экспозиционной дозы, тактико-технические характеристики которых приведены в таблице 2.

Комплекты индивидуальных дозиметров ДП-22В и ДП-24, имеющих дозиметры карманные прямо показывающие ДКП-50А, предназначенные для контроля, экспозиционных доз гамма-облучения, получаемых людьми при работе на зараженной радиоактивными веществами местности или при работе с открытыми и закрытыми источниками ионизирующих излучений.

Комплект дозиметров ДП-22В состоит из зарядного устройства 1 типа ЗД-5 и 50 индивидуальных дозиметров карманных прямо показывающих 2 типа ДКП-50А. В отличие от ДП-22В комплект дозиметров ДП-24 имеет пять дозиметров ДКП-50А.

Зарядное устройство 1 предназначено для зарядки дозиметров ДКП-50А. В корпусе ЗД-5 размещены: преобразователь напряжения, выпрямитель высокого напряжения, потенциометр-регулятор напряжения, лампочка для подсвета зарядного гнезда, микровыключатель и элементы питания. На верхней панели устройства находятся: ручка потенциометра 3, зарядное гнездо 5 с колпачком 6 и крышка отсека питания 4. Питание осуществляется

от двух сухих элементов типа 1,6-ПМЦ-У-8, обеспечивающих непрерывную работу прибора не менее 30ч при токе потребления 200мА. Напряжение на выходе зарядного устройства плавно регулируется в пределах от 180 до 250В.

Дозиметр контрольный прямопоказывающий ДКП-50А предназначен для измерения экспозиционных доз гамма-излучения. Конструктивно он выполнен в форме авторучки. Дозиметр состоит из дюралевого корпуса 1, в котором расположены ионизационная камера и конденсатором, электроскоп, отсчетное устройство и зарядная часть.

Основная часть дозиметра - малогабаритная ионизационная камера 2, к которой подключен конденсатор 4 с электроскопом. Внешним электродом системы камера - конденсатор является дюралевый цилиндрический корпус 1, внутренним электродом - алюминиевый стержень 5. Электроскоп образует изогнутая часть внутреннего электрода (держатель) и приклеенная к нему

платинированная визирная нить (подвижный элемент)

3.В передней части корпуса расположено отсчетное устройство -микроскоп с 90-кратным увеличением, состоящий из окуляра 9, объектива 12 и шкалы 10. Шкала имеет 25 делений (о 0 до 50). Цена одного деления соответствует двум рентгенам. Шкалу и окуляр крепят фасонной гайкой.

В задней части корпуса находится зарядная часть, состоящая из диафрагмы 7 с подвижным контактным штырем 6. При нажатии штырь 6 замыкается с внутренним электродом ионизационной камеры. При снятии нагрузки контактный штырь диафрагмой возвращается в исходное положение. Зарядную часть дозиметра предохраняет от загрязнения защитная оправа 8. Дозиметр крепится к карману одежды с помощью держателя 11.

Принцип действия дозиметра подобен действию простейшего электроскопа. В процессе зарядки дозиметра визирная нить 3 электроскопа отклоняется от внутреннего электрода 5 под влиянием сил электростатического отталкивания. Отклонение нити зависит от приложенного напряжения, которое при зарядке регулируют и подбирают так, чтобы изображение визирной нити совместилось с нулем шкалы отсчетного устройства.

При воздействии гамма-излучения на заряженный дозиметр в рабочем объеме камеры возникает ионизационный ток. Ионизационный ток уменьшает первоначальный заряд конденсатора и камеры, а следовательно, и потенциал внутреннего электрода. Изменение потенциала, измеряемого электроскопом, пропорционально экспозиционной дозе гамма-излучения. Изменение потенциала внутреннего электрода приводит к уменьшению сил электростатического отталкивания между визирной нитью и держателем электроскопа. В результате визирная нить сближается с держателем, а изображение её перемещается по шкале отсчетного устройства. Держа дозиметр против света и наблюдая через окуляр за нитью, можно в любой момент произвести отсчет полученной экспозиционной дозы излучения.

Дозиметр ДКП-50А обеспечивает измерение индивидуальных экспозиционных доз гамма-излучения в диапазоне от 2 до 50 Р при мощности экспозиционной дозы излучения от 0,5 до 200 Р/ч. Саморазряд дозиметра в нормальных условиях не превышает двух делений за сутки.

Зарядка дозиметра ДКП-50А производится перед выходом на работу в район радиоактивного заражения (действия гамма-излучения) в следующем порядке:

* отвинтить защитную оправу дозиметра (пробку со стеклом) и защитный колпачок зарядного гнезда ЗД-5;

* ручку потенциометра зарядного устройства повернуть влево до отказа;

* дозиметр вставить в зарядное гнездо зарядного устройства, при этом включается подсветка зарядного гнезда и высокое напряжение;

* наблюдая в окуляр, слегка нажать на дозиметр и, поворачивая ручку потенциометра вправо, установить нить на «О» шкалы, после чего вынуть дозиметр из зарядного гнезда;

* проверить положение нити на свет: её изображение должно быть на отметке «О», завернуть защитную оправу дозиметра и колпачок зарядного гнезда.

Экспозиционную дозу излучения определяют по положению нити на шкале отсчетного устройства. Отсчет необходимо производить при вертикальном положении нити, чтобы исключить влияние на показание дозиметра прогиба нити от веса.

Комплект ИД-1 предназначается для измерения поглощенных доз гамма-нейтронного излучения. Он состоит из индивидуальных дозиметров ИД-1 и зарядного устройства ЗД-6. Принцип работы дозиметра ИД-1 аналогичен принципу работы дозиметров для измерения экспозиционных доз гамма-излучения (например, ДКП-50А).

Измерители мощности дозы ДП-5А и ДП-5В предназначены для измерения уровней радиации на местности и радиоактивной зараженности различных предметов по гамма-излучению. Мощность гамма-излучения определяется в миллирентгенах или рентгенах в час для той точки пространства, в которой помещен при измерениях соответствующий счетчик прибора. Кроме того, имеется возможность обнаружения бета-излучения.

Диапазон измерений по гамма-излучению от 0,05 мР/ч до 200 Р/ч в диапазоне энергий гамма-квантов от 0,084 до 1,25 Мэв. Приборы ДП-5А, ДП-5Б и ДП-5В имеют

Приборы имеют звуковую индикацию на всех поддиапазонах, кроме первого. Звуковая индикация прослушивается с помощью головных телефонов 8.

Питание приборов осуществляется от трех сухих элементов типа КБ-1 (дин из них для подсвета шкалы), которые обеспечивают непрерывность работы в нормальных условиях не менее 40ч - ДП-5А и 55ч - ДП-5В. Приборы могут подключаться к внешним источникам постоянного тока напряжением 3,6 и 12В - ДП-5А и 12 или 24В - ДП-5В, имея для этой цели колодку питания и делитель напряжения с кабелем длиной 10м соот­ветственно.

Устройство приборов ДП-5А (Б) и ДП-5В. В комплект прибора входят: футляр с ремнями; удлинительная штанга; колодка питания к ДП-5А (Б) и делитель напряжения к ДП-5В; комплект эксплуатационной документации и запасного имущества; телефон и укладочный ящик.

Прибор состоит из измерительного пульта; зонда в ДП-5А (Б) или блока детектирования в ДП-5В 1, соединенных с пультами гибкими кабелями 2; контрольного стронциево-иттриевого источника бета-излучения для проверки работоспособности приборов (с внутренней стороны крышки футляра у ДП-5А (Б) 9 и на блоке детектирования у ДП-5В).

Измерительный пульт состоит из панели и кожуха. На панели измерительного пульта размещены: микроамперметр с двумя измерительными шкалами 3; переключатель поддиапазонов 4; ручка «Режим» 6 (потенциометр регулировки режима); кнопка сброса показаний («Сброс») 7; тумблер подсвета шкалы 5; винт установки нуля 10; гнездо включения телефона 11. Панель крепится к кожуху двумя невыпадающими винтами. Элементы схемы прибора смонтированы на шасси, соединенном с панелью при помощи шарнира и винта. Внизу кожуха имеется отсек для размещения источников питания. При отсутствии элементов питания сюда может быть подключен делитель напряжения от источников постоянного тока.

Воспринимающими устройствами приборов являются газоразрядные счетчики, установленные: в приборе ДП-5А - один (СИЗБГ) в измерительном пульте и два (СИЗБГ и СТС-5) в зонде; в приборе ДП-5В - два (СБМ-20 и СИЗБГ) в блоке детектирования.

Зонд и блок детектирования 1 представляет собой стальной цилиндрический корпус с окном для индикации бета-излучения, заклеенным этилцеллюлозной водостойкой пленкой, через которую проникают бета-частицы. На корпус надет металлический поворотный экран, который фиксируется в двух положениях («Г» и «Б») на зонде и в трех положениях («Г», «Б» и «К») на блоке детектирования. В положении «Г» окно корпуса закрывается экраном и в счетчик могут проникать только гамма-лучи. При повороте экрана в положение «Б» окно корпуса открывается и бета-частицы

проникают к счетчику. В положении «К» контрольный источник бета-излучения, который укреплен в углублении на экране, устанавливается против окна и в этом положении проверяется работоспособность прибора ДП-5В.

На корпусах зонда и блока детектирования имеются по два выступа, с помощью которых они устанавливаются на обследуемые поверхности при индикации бета-зараженности. Внутри корпуса находится плата, на которой смонтированы газоразрядные счетчики, усилитель-нормализатор и электрическая схема.

Футляр прибора состоит: ДП-5А - из двух отсеков (для установки пульта и зонда); ДП-5В - из трех отсеков (для размещения пульта, блока детектирования и запасных элементов питания). В крышке футляра имеются окна для наблюдения за показаниями прибора. Для ношения прибора к футляру присоединяются два ремня.

Телефон 8 состоит из двух малогабаритных телефонов типа ТГ-7М и оголовья из мягкого материала. Он подключается к измерительному пульту и фиксирует наличие радиоактивных излучений: чем выше мощность излучений, тем чаще звуковые щелчки.

Из запасных частей в комплект прибора входят чехлы для зонда, колпачки, лампочки накаливания, отвертка, винты.

Подготовка прибора к работе проводиться в следующем порядке:

1) извлечь прибор из укладочного ящика, открыть крышку футляра, провести внешний осмотр, пристегнуть к футляру поясной и плечевой ремни;

2) вынуть зонд или блок детектирования; присоединить ручку к зонду, а к блоку детектирования - штангу (используемую как ручку);

3) установить корректором механический нуль на шкале микроамперметра;

4) подключить источники питания;

5) включить прибор, поставив ручки переключателей поддиапазонов в положение: «Реж.» ДП-5А и (контроль режима) ДП-5В (стрелка прибора должна установиться в режимном секторе); в ДП-5А с помощью ручки потенциометра стрелку прибора установить в режимном секторе на

Если стрелки микроамперметров не входят в режимные сектора, необходимо заменить источники питания.

Проверку работоспособности приборов проводят на всех поддиапазонах, кроме первого («200»), с помощью контрольных источников, для чего экраны зонда и блока детектирования устанавливают в положениях «Б» и «К» соответственно и подключают телефоны. В приборе ДП-5А открывают контрольный бета-источник, устанавливают зонд опорными выступами на крышку футляра так, чтобы источник находился против открытого окна зонда. Затем, переводя последовательно переключатель поддиапазонов в положения «* 1000», «* 100», «*10», «*1», «*0,1», наблюдают за показаниями прибора и прослушивают щелчки в телефонах. Стрелки микроамперметров должны зашкаливать на VI и V поддиапазонах, отклоняться на IV, а на III и II могут не отклоняться из-за недостаточной активности контрольных бета-источников.

После этого ручки переключателей поставить в положение «Выкл.» ДП-5А и «^» - ДП-5В; нажать кнопки «Сброс»; повернуть экраны в положение «Г». Приборы готовы к работе.

Радиационную разведку местности, с уровнями радиации от 0,5 до 5 Р/ч, производят на втором поддиапазоне (зонд и блок детектирования с экраном в положение «Г» остаются в кожухах приборов), а свыше 5 Р/ч - на первом поддиапазоне. При измерении прибор должен находиться на высоте 0,7-1 м от поверхности земли.

Степень радиактивного заражения кожных покровов людей, их одежды, сельскохозяйственных животных, техники, оборудования, транспорта и т.п. определяется в такой последовательности. Измеряют гамма-фон в месте, где будет определяться степень заражения объекта, но не менее 15-2 Ом от обследуемого объекта.

Для определения наличия наведенной активности техники, подвергшейся воздействию нейтронного излучения, производят два измерения - снаружи и внутри техники. Если результаты измерений близки между собой, это означает, что техника имеет наведенную активность.

Для обнаружения бета-излучений необходимо установить экран зонда в положение "Б", поднести к о обследуемой поверхности на расстояние 1,5-2см. ручку переключателя поддиапазонов последовательно поставить в положения «* 0,1», «*1», «*10» до получения отклонения стрелки микроамперметра в пределах шкалы. Увеличение показаний прибора на одном и том же поддиапазоне по сравнению с гамма-измерением показывает наличие бета-излучения.

Если надо выяснить, с какой стороны заражена поверхность брезентовых тентов, стен и перегородок сооружений и других прозрачных для гамма-излучений объектов, то производят два замера в положении зонда «Б» и «Г», поверхность заражена с той стороны, с которой показания прибора в положении зонда «Б» заметно выше.

При определении степени радиоактивного заражения воды отбирают две пробы общим объемом 1,5- Юл. Одну - из верхнего слоя водоисточника, другую - с придонного слоя. Измерения производят зондом в положении «Б», располагая его на расстоянии 0,5-1см от поверхности воды, и снимают показания по верхней шкале.

На шильдиках крышек футляров даны сведения о допустимых нормах радиоактивного заражения и указаны поддиапазоны, на которых они измеряются.

Бортовой измеритель мощности дозы ДП-ЗБ предназначен для определения уровней радиации на местности, зараженной радиоактивными веществами. Его можно устанавливать на автомобилях, самолетах, вертолетах, речных катерах, тепловозах, а также в убежищах и противорадиационных укрытиях. Питание прибора осуществляется от источников постоянного тока напряжением 12 или 26В.

В комплект прибора входит: измерительный пульт А, выносной блок Б, кабель питания с прямым разъемом 1, кабель с угловым разъемом 9 для

соединения пульта с выносным блоком Б, крепежные скобы, техническая документация и вспомогательные принадлежности. На панели измерительного пульта размещены: микроамперметр с двухрядной шкалой 3 (цена деления верхней шкалы 0,05 Р/ч, нижней - 5 ОР/ч), лампа световой индикации 6, лампа подсвета 4 шкалы микроамперметра и указателя поддиапазонов 5, предохранители 8, кнопка "Проверка" 2, переключатель поддиапазонов 7 на шесть положений: выключено "Выкл.", включено "Вкл.", «*10», «*100» и «500».

Подготовка прибора к работе ДП-ЗБ к работе: проверка комплекта, внешний осмотр прибора и принадлежностей, сборка прибора, подключение к цепи питания проверка работоспособности.

Работоспособность прибора проверяется в положении переключателя «Вкл.» Нажатием кнопки «Проверка». При этом стрелка микроамперметра должна находиться в пределах 0,4-0,8 Р/ч, а индикаторная лампа давать частые вспышки или гореть непрерывно.

Пред измерением уровней радиации переключатель поставить в положение «Вкл.» И выждать, пока стрелка микроамперметра не установится в пределах зачерненного участка шкалы. Затем переключатель поставить в положение первого поддиапазона («*1») и через 30с отсчитать показания по верхней шкале микроамперметра. Если стрелка зашкаливает, переключатель последовательно устанавливать в положение второго, третьего и четвертого поддиапазонов. Показания на первых трех поддиапазонах снимать по верхней шкале и умножать их соответственно на коэффициенты 1, 10, 100. На четвертом поддиапазоне показания снимать по нижней шкале без умножения на какой-либо коэффициент.

2.6.Биологическое действие ионизирующих излучений

Ионизация, создаваемая излучением в клетках, приводит к образованию свободных радикалов. Свободные радикалы вызывают разрушения целостности цепочек макромолекул (белков и нуклеиновых кислот), что может привести как к массовой гибели клеток, так и канцерогенезу и мутагенезу. Наиболее подвержены воздействию ионизирующего излучения активно делящиеся (эпителиальные, стволовые, также эмбриональные) клетки.

Из-за того, что разные типы ионизирующего излучения обладают разной ЛПЭ, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятия относительной биологической эффективности (коэффициента качества) излучения по отношению к излучению с низкой ЛПЭ (коэффициент качества фотонного и электронного излучения принимают за единицу) и эквивалентной дозы ионизирующего излучения, численно равной произведению поглощённой дозы на коэффициент качества.

После действия излучения на организм в зависимости от дозы могут возникнуть детерминированные и стохастические радиобиологические эффекты. Например, порог появления симптомов острой лучевой болезни у человека составляет 1-2 Зв на всё тело.

В отличие от детерминированных, стохастические эффекты не имеют чёткого дозового порога проявления. С увеличением дозы облучения возрастает лишь частота проявления этих эффектов. Проявиться они могут как спустя много лет после облучения (злокачественные новообразования), так и в последующих поколениях (мутации).

Основным источником информации о стохастических эффектах воздействия ионизирующего излучения являются данные наблюдений за здоровьем людей, переживших атомные бомбардировки Хиросимы и Нагасаки. Японские специалисты в течение всех лет после атомной бомбардировки двух городов наблюдали тех 87 500 человек, которые пережили ее. Средняя доза их облучения составила 240 миллизиверт. При этом прирост онкологических заболеваний за последующие годы составил 9%. При дозах менее 100 миллизиверт отличий между ожидаемой и наблюдаемой в реальности заболеваемостью никто в мире не установил.

2.7.Гигиеническое нормирование ионизирующих излучений

Нормирование осуществляется по санитарным правилам и нормативам СанПин 2.6.1.2523-09 «Нормы радиационной безопасности (НРБ-99/2009)». Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

персонал - лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Основные пределы доз и допустимые уровни облучения персонала группы Б равны четверти значений для персонала группы А.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) 1000 мЗв, а для обычного населения за всю жизнь - 70 мЗв. Планируемое повышенное облучение допускается только

для мужчин старше 30 лет при их добровольном письменном согласии после информирования о возможных дозах облучения и риске для здоровья.

Навигация по статье:


Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют - ионизирующее излучение или что чаще встречается радиоактивное излучение , или еще проще радиация . К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация - это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.



Альфа, бета и нейтронное излучение - это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение - это излучение энергии.


Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение - это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое


Нейтронное излучение - это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация:
  • биологическое действие радиации: низкое

Гамма (γ) излучение - это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения - это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение - это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.


Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!



Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.


Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы , осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше "коэффициент k" тем опаснее действие определенного вида радиции для тканей живого организма.




Видео:


Радиация - излучение (от radiare - испускать лучи) - распространение энергии в форме волн или частиц. Свет, ультрафиолетовые лучи, инфракрасное тепловое излучение, микроволны, радиоволны представляют собой разновидность радиации. Часть излучений получили название ионизирующих, благодаря своей способности вызывать ионизацию атомов и молекул в облучаемом веществе.


Ионизирующее излучение - излучение, взаимодействие которого со средой приводит к образованию ионов разных знаков. Это поток частиц или квантов, способных прямо или косвенно вызывать ионизацию окружающей среды. Ионизирующее излучение объединяет разные по своей физической природе виды излучений. Среди них выделяются элементарные частицы (электроны, позитроны, протоны, нейтроны, мезоны и др.), более тяжелые многозарядные ионы (a-частицы, ядра бериллия, лития и других более тяжелых элементов); излучения, имеющие электромагнитную природу (g-лучи, рентгеновские лучи).


Различают два типа ионизирующих излучений: корпускулярное и электромагнитное.


Корпускулярное излучение - представляет собой поток частиц (корпускул), которые характеризуются определенной массой, зарядом и скоростью. Это электроны, позитроны, протоны, нейтроны, ядра атомов гелия, дейтерия и др.


Электромагнитное излучение - поток квантов или фотонов (g-лучи, рентгеновские лучи). Оно не имеет ни массы, ни заряда.


Различают также непосредственно и косвенно ионизирующие излучения.


Непосредственно ионизирующее излучение - ионизирующее излучение, состоящее из заряженных частиц, имеющих кинетическую энергию, достаточную для ионизации при столкновении ( , частица и др.).


Косвенно ионизирующее излучение - ионизирующее излучение, состоящее из незаряженных частиц, и фотонов которые могут создавать непосредственно ионизирующее излучение и (или) вызвать ядерные превращения (нейтроны, рентгеновские и g-излучения).


Основными свойствами ионизирующих излучений является способность при прохождении через любое вещество вызывать образования большого количества свободных электронов и положительно заряженных ионов (т.е. ионизирующая способность).


Частицы или квант высокой энергии выбивают обычно один из электронов атома, который уносит с собой единичный отрицательный заряд. При этом оставшаяся часть атома или молекулы, приобретя положительный заряд (из-за дефицита отрицательно заряженной частицы), становится положительно заряженным ионом. Это так называемая первичная ионизация.


Выбитые при первичном взаимодействии электроны, обладая определенной энергией, сами взаимодействуют со встречными атомами, превращают их в отрицательно заряженный ион (происходит вторичная ионизация ). Электроны, которые потеряли в результате столкновений свою энергию, остаются свободными. Первый вариант (образование положительных ионов) происходит лучше всего с атомами, у которых на внешней оболочке имеется 1-3 электрона, а второй (образование отрицательных ионов) - с атомами, у которых на внешней оболочке имеется 5-7 электронов.


Таким образом, ионизирующий эффект - главное проявление действия радиации высоких энергий на вещество. Именно поэтому радиация и называется ионизирующей (ионизирующими излучениями).


Ионизация возникает как в молекулах неорганического вещества, так и в биологических системах. Для ионизации большинства элементов, которые входят в состав биосубстратов (это значит для образования одной пары ионов) необходимо поглощение энергии в 10-12 эВ (электрон-вольт). Это так называемый потенциал ионизации . Потенциал ионизации воздуха равен в среднем 34 эВ.


Таким образом, ионизирующие излучения характеризуются определенной энергией излучения, измеряемой в эВ. Электрон-вольт (эВ) - это внесистемная единица энергии, которую приобретает частица с элементарным электрическим зарядом при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 вольт.


1эВ=1,6 х 10-19 Дж = 1,6 х 10-12 эрг.


1кэВ (килоэлектрон-вольт) = 103 эВ.


1МэВ (мегаэлектрон-вольт) = 106 эВ.


Зная энергию частиц, можно подсчитать, сколько пар ионов они способны образовать на пути пробега. Длина пути - полная длина траектории частицы (какой бы сложной она не была бы). Так, если частица обладает энергией в 600 кэВ, то она может образовать в воздухе около 20000 пар ионов.


В тех случаях, когда энергии частицы (фотона) недостаточно для того, чтобы преодолел притяжение атомного ядра и вылетел за пределы атома, (энергия излучений меньше потенциала ионизации) ионизация не происходит. , приобретя излишек энергии (так называемый возбужденный ), на доли секунды переходит на более высокий энергетический уровень, а затем скачком возвращается на прежнее место и отдает излишнюю энергию в виде кванта свечения (ультрафиолетового или видимого). Переход электронов с внешних орбит на внутренние сопровождается рентгеновским излучением.


Однако, роль возбуждения в воздействии радиации второстепенная в сравнении с ионизацией атомов, поэтому общепринято название радиации высоких энергий: «ионизирующая », что подчеркивает ее главное свойство.


Второе название радиации - «проникающая » - характеризует способность излучений высокой энергии, прежде всего, рентгеновских и
g-лучей, проникать в глубину вещества, в частности, в тело человека. Глубина проникновения ионизирующего излучения зависит, с одной стороны, от природы излучения, заряда составляющих его частиц и энергии, а с другой - состава и плотности облучаемого вещества.


Ионизирующие излучения обладают определенной скоростью и энергией. Так, b-излучение и g-излучение распространяются со скоростью, близкой к скорости света. Энергия, например, a-частиц колеблется в пределах 4-9 МэВ.


Одной из важных особенностей биологического воздействия ионизирующей радиации является невидимость, неощутимость. В этом и заключается их опасность, человек ни визуально, ни органолептически не может обнаружить воздействие излучений. В отличие от лучей оптического диапазона и даже радиоволн, которые вызывают в определенных дозах нагревание тканей и ощущение тепла, ионизирующие излучения даже в смертельных дозах нашими органами чувств не фиксируется. Правда, у космонавтов наблюдались косвенные проявления действия ионизирующей радиации - ощущение вспышек при закрытых глазах - за счет массивной ионизации в сетчатке глаза. Таким образом, ионизация и возбуждение - основные процессы, в которых тратится энергия излучений, поглощаемая в облучаемом объекте.


Возникшие ионы исчезают в процессе рекомбинации, это значит воссоединения положительных и отрицательных ионов, в котором образуются нейтральные атомы. Как правило, процесс сопровождается образованием возбуждаемых атомов.


Реакции с участием ионов и возбужденных атомов имеют чрезвычайно важное значение. Они лежат в основе многих химических процессов, в том числе и биологически важных. С ходом этих реакций связываются отрицательные результаты воздействия радиации на организм человека.



 

Возможно, будет полезно почитать: