Магнитное поле в прямолинейном проводнике. Магниты и магнитное поле проводника с током

Магнитами называются тела, обладающие свойством при­тягивать железные предметы. Проявляемое магнитами свойство притяжения называется магнетизмом. Магниты бывают есте­ственными и искусственными. Добываемые железные руды, об­ладающие свойством притяжения, называются естественными магнитами, а намагниченные куски металла - искусственными магнитами, которые часто называют постоянными магнитами.

Свойства магнита притягивать железные предметы в наибольшей степени проявляются на его концах, которые называются магнитными полюсам и, или просто полюсами. Каждый магнит имеет два полюса: северный (N - норд) и южный (S- зюйд). Линия, проходящая через середину магнита, называется нейтральной л и н и е й, или нейтралью, так как по этой линии не обнаруживается магнитных свойств.

Постоянные магниты образуют магнитное поле, в котором действуют магнитные силы в определенных направлениях, называемых силовыми линиями. Силовые линии выходят из северного полюса и входят в южный.

Электрический ток, проходящий по проводнику, также образует вокруг проводника магнитное поле. Установлено, что магнитные явления неразрывно связаны с электрическим то­ком.

Магнитные силовые линии располагаются вокруг проводника с током по окружности, центром которых является сам проводник, при этом ближе к проводнику они располагаются гуще, а дальше от проводника - реже. Расположение магнитных силовых линий вокруг проводника с током зависит от формы его поперечного сечения.

Для определения направления силовых линий пользуются правилом буравчика, которое формулируется так: если ввинчивать буравчик по направлению тока в проводнике, то вращение рукоятки буравчика покажет направление магнитных силовых линий.

Магнитное поле прямого проводника представляет собой ряд концентрических окружностей (рис. 157, а). Для усиления маг­нитного поля в проводнике последний изготовляют в виде катушки (рис. 157, б).

если направление вращения рукоятки буравчика совпадает с направлением электрического тока в витках катушки, то поступательное движение буравчика направлено в сторону се­верного полюса.


Магнитное поле катушки с током аналогично полю постоянного магнита, поэтому катушка с током (соленоид) имеет все свойства магнита.

Здесь также направление магнитных силовых линий вокруг каждого витка катушки определяется правилом буравчика. Си­ловые линии соседних витков складываются, усиливая общее магнитное поле катушки. Как следует из рис. 158, силовые линии магнитного поля катушки выходят из одного конца и входят в другой, замыкаясь внутри катушки. Катушка, как и постоянные магниты, имеет полярность (южный и северный полюсы), кото­рая также определяется по правилу буравчика, если изложить его так: если направление вращения рукоятки буравчика совпа­дает с направлением электрического тока в витках катушки, то поступательное движение буравчика направлено в сторону се­верного полюса.

Для характеристики магнитного поля с количественной стороны введено понятие магнитной индукции.

Магнитной индукцией называется число магнитных силовых линий, приходящихся на 1 см 2 (или 1 м 2) поверхности, перпендикулярной направлению силовых линий. В системе СИ магнитная индукция измеряется в теслах (сокращенно Т) и обозначается буквой В (тесла = вебер/м2 = вольт секунда/м2

Вебер - единица измерения магнитного потока.

Магнитное поле можно усилить, если вставить в катушку железный стержень (сердечник). Наличие железного сердечника усиливает поле, так как, находясь в магнитном иоле катушки, железный сердечник намагничивается, создает свое поле, которое складывается с первоначальным и усиливается. Такое устройство называется электромагнитом.

Общее число силовых линий, проходящих через сечение сердечника, называется магнитным потоком. Величина маг­нитного потока электромагнита зависит от тока, проходящего по катушке (обмотке), числа се витков и сопротивления магнитной цепи.

Магнитной цепью, или магиитопроводом, называется путь, по которому замыкаются магнитные силовые линии. Магнитное сопротивление магнитопровода зависит от магнитной проницае­мости среды, по которой проходят силовые линии, длины этих ли­ний и поперечного сечения сердечника.

Произведение тока, проходящего по обмотке, на число ее витков носит название магнитодвижущей силы (м. д. с). Маг­нитный поток равен магнитодвижущей силе, деленной на магнитное сопротивление цепи - так формулируется закон Ома для магнитной цепи. Так как число витков и магнитное сопротивление для данного электромагнита - величины постоянные, магнитный поток электромагнита можно изменять, регулируя ток в его обмотке.

Электромагниты находят самое широкое применение в различ­ных машинах и приборах (в электромашинах, электрических звонках, телефонах, измерительных приборах и т. д.).

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная э. д. с.

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся заряженные частицы, а стало быть, и на электрические токи.

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (фиг. 78). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (фиг. 79). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Направление магнитных индукционных линий вокруг проводника с током можно определить по «правилу буравчика:». Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (фиг. 81),

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться «правилом буравчика» (фиг. 82). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть

Получено независимо и отдельно от тока. Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Количественное выражение для магнитиой индукции в результате обобщения опытных данных было установлено Био и Саваром (фиг. 83). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого АВ прямо пропорциональна длине А1 этого элемента, величине протекающего тока I, синусу угла а между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиуса-вектора r:

генри (гн)-единица индуктивности; 1 гн= 1 ом сек.

- относительная магнитная проницаемость - безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости пустоты. Размерность магнитной индукции можно найти по формуле

вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции-гаусс (гс):

Закон Био и Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где- расстояние от проводника до точки, где определяется

Магнитная индукция. Отношение магнитной индукции к произведению магнитных проницаемостей называется напряженностью магнитного поля и обозначается буквой Н:

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля. Найдем размерность Н:

Иногда пользуются другой единицей напряженности - эрстедом (эр):

1 эр = 79,6 a/м = 0,796 а/см.

Напряженность магнитного поля Н, как и магнитная индукция В, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Размерность магнитного потока:

т. е. магнитный поток измеряется в вольт-секундах или веберах. Более мелкой единицей магнитного потока является максвелл (мкс):

1 вб = 108 мкс. 1 мкс = 1 гс см2.

Если к прямолинейному проводнику с током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки (рис. 67). Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными. Иными словами, если по проводнику проходит электрический ток, то вокруг проводника возникает магнитное поле. Магнитное поле можно рассматривать как особое состояние пространства, окружающего проводники с током.

Если продеть через картой толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные линии (рис. 68). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рис. 69). Это показывает, что направление магнитных линий меняется с изменением направления тока в проводнике.

Магнитное поле вокруг проводника с током обладает следующими особенностями: магнитные линии прямолинейного проводника имеют форму концентрических окружностей; чем ближе к проводнику, тем плотнее располагаются магнитные линии, тем больше магнитная индукция; магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; направление магнитных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелу по направлению тока (рис. 70), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Направление магнитных линий вокруг проводника с током можно определить по "правилу буравчика". Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных линий вокруг проводника (рис. 71).


Рис. 71. Определение направления магнитных линий вокруг проводника с током по "правилу буравчика"

Магнитная стрелка, внесенная в поле проводника с током, располагается вдоль магнитных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рис. 72).


Рис. 72. Определение направления отклонения магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

В постоянных магнитах магнитное поле также вызывается движением электронов, входящих в состав атомов и молекул магнита.

Интенсивность магнитного поля в каждой его точке определяется величиной магнитной индукции, которую принято обозначать буквой В. Магнитная индукция является векторной величиной, т. е. она характеризуется не только определенным значением, но и определенным направлением в каждой точке магнитного поля. Направление вектора магнитной индукции совпадает с касательной к магнитной линии в данной точке поля (рис. 73).

В результате обобщения опытных данных французские ученые Био и Савар установили, что магнитная индукция В (интенсивность магнитного поля) на расстоянии r от бесконечно длинного прямолинейного проводника с током определяется выражением


где r - радиус окружности, проведенной через рассматриваемую точку поля; центр окружности находится на оси проводника (2πr - длина окружности);

I - величина тока, протекающего по проводнику.

Величина μ а, характеризующая магнитные свойства среды, называется абсолютной магнитной проницаемостью среды.

Для пустоты абсолютная магнитная проницаемость имеет минимальное значение и ее принято обозначать μ 0 и называть абсолютной магнитной проницаемостью пустоты.


1 гн = 1 ом⋅сек.

Отношение μ а / μ 0 , показывающее, во сколько раз абсолютная магнитная проницаемость данной среды больше абсолютной магнитной проницаемости пустоты, называется относительной магнитной проницаемостью и обозначается буквой μ.

В Международной системе единиц (СИ) приняты единицы измерения магнитной индукции В - тесла или вебер на квадратный метр (тл, вб/м 2).

В инженерной практике магнитную индукцию принято измерять в гауссах (гс): 1 тл = 10 4 гс.

Если во всех точках магнитного поля вектора магнитной индукции равны по величине и параллельны друг другу, то такое поле называется однородным.

Произведение магнитной индукции В на величину площадки S, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции, или просто магнитным потоком, и обозначается буквой Φ (рис. 74):

В Международной системе в качестве единицы измерения магнитного потока принят вебер (вб).

В инженерных расчетах магнитный поток измеряют в максвеллах (мкс):

1 вб = 10 8 мкс.

При расчетах магнитных полей пользуются также величиной, называемой напряженностью магнитного поля (обозначается Н). Магнитная индукция В и напряженность магнитного поля Н связаны соотношением

Единица измерения напряженности магнитного поля Н - ампер на метр (а/м).

Напряженность магнитного поля в однородной среде, так же как и магнитная индукция, зависит от величины тока, числа и формы проводников, по которым проходит ток. Но в отличие от магнитной индукции напряженность магнитного поля не учитывает влияния магнитных свойств среды.

При прохождении тока по прямолинейному проводнику вокруг него возникает магнитное поле (рис. 26). Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Н
аправление магнитных силовых линий можно определить по правилу буравчика.Если поступательное движение буравчика (рис. 27) совместить с направлением тока в проводнике, то вращение его рукоятки укажет направление силовых линий магнитного поля вокруг проводника. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже.

Способы усиления магнитных полей. Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

При проводнике, согнутом в виде витка (рис. 28,а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, с
озданные отдельными витками, складываются (рис. 28,б) и их силовые линии соединяются в общий магнитный поток. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле.

Катушка, обтекаемая током, представляет собой искусственный электрический магнит. Для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.

О

пределить направление магнитного поля, создаваемого витком или катушкой, можно также с помощью правой руки (рис.29) и буравчика (рис. 30).

18. Магнитные свойства различных веществ.

Все вещества в зависимости от магнитных свойств делят на три группы: ферромагнитные, парамагнитные и диамагнитные.

К ферромагнитным материалам относят железо, кобальт, никель и их сплавы. Они обладают высокой магнитной проницаемостью µ и хорошо притягиваются к магнитам и электромагнитам.

К парамагнитным материалам относят алюминий, олово, хром, марганец, платину, вольфрам, растворы солей железа и др. Парамагнитные материалы притягиваются к магнитам и электромагнитам во много раз слабее, чем ферромагнитные материалы.

Диамагнитные материалы к магнитам не притягиваются, а, наоборот, отталкиваются. К ним относят медь, серебро, золото, свинец, цинк, смолу, воду, большую часть газов, воздух и пр.

Магнитные свойства ферромагнитных материалов. Ферромагнитные материалы благодаря их способности намагничиваться широко применяют при изготовлении электрических машин, аппаратов в других электротехнических установок.

Кривая намагничивания . Процесс намагничивания ферромагнитного материала можно изобразить в виде кривой намагничивания (рис. 31), которая представляет собой зависимость индукции В от напряженности Н магнитного поля (от намагничивающего тока I ).

Кривую намагничивания можно разбить на три участка:О-а , на котором магнитная индукция возрастает почти пропорционально намагничивающему току; а-б , на котором рост магнитной индукции замедляется, и участок магнитного насыщения за точкой б , где зависимостьВ от Н становится опять прямолинейной, но характеризуется медленным нарастанием магнитной индукции при увеличении напряженности поля.

П
еремагничивание ферромагнитных материалов, петля гистерезиса
. Большое практическое значение, особенно в электрических машинах и установках переменного тока, имеет процесс перемагничивания ферромагнитных материалов. На рис. 32 показан график изменения индукции при намагничивании и размагничивании ферромагнитного материала (при изменении намагничивающего тока I . Как видно из этого графика, при одних и тех же значениях напряженности магнитного поля магнитная индукция, полученная при размагничивании ферромагнитного тела (участок а-б-в ), будет больше индукции, полученной при намагничивании (участки О-а и д-а ). Когда намагничивающий ток будет доведен до нуля, индукция в ферромагнитном материале не уменьшится до нуля, а сохранит некоторое значение В r , соответствующее отрезку О-б . Это значение называется остаточной индукцией.

Явление отставания, или запаздывания, изменений магнитной индукции от соответствующих изменений напряженности магнитного поля называется магнитным гистерезисом, а сохранение в ферромагнитном материале магнитного поля после прекращения протекания намагничивающего тока - остаточным магнетизмом.

П
ри изменении направления намагничивающего тока можно полностью размагнитить ферромагнитное тело и довести магнитную индукцию в нем до нуля. Обратная напряженностьН с , при которой индукция в ферромагнитном материале уменьшается до нуля, называется коэрцитивной силой. Кривую О-а , получающуюся при условии, что ферромагнитное вещество было предварительно размагничено, называют первоначальной кривой намагничивания. Кривую изменения индукции называют петлей гистерезиса.

Влияние ферромагнитных материалов на распределение магнитного поля . Если поместить в магнитное поле какое-либо тело из ферромагнитного материала, то магнитные силовые линии будут входить и выходить из него под прямым углом. В самом теле и около него будет иметь место сгущение силовых линий, т. е. индукция магнитного поля внутри тела и вблизи него возрастает. Если выполнить ферромагнитное тело в виде кольца, то во внутреннюю его полость магнитные силовые линии практически проникать не будут (рис. 33) и кольцо будет служить магнитным экраном, защищающим внутреннюю полость от влияния магнитного поля. На этом свойстве ферромагнитных материалов основано действие различных экранов, защищающих электроизмерительные приборы, электрические кабели и другие электротехнические устройства от вредного воздействия внешних магнитных полей.

Лекция: Опыт Эрстеда. Магнитное поле проводника с током. Картина линий поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током


Опыт Эрстеда


Магнитные свойства некоторых веществ известны людям достаточно давно. Однако не столь давним открытием стало то, что магнитные и электрические природы веществ связанны между собой. Эту связь показал Эрстед , проводивший опыты с электрическим током. Совершенно случайно рядом с проводником, по которому бежал ток, находится магнит. Он достаточно резко менял свое направление в то время, когда ток бежал по проводам, и становился в исходное положение, когда ключ схемы был разомкнут.


С данного опыта был сделан вывод, что вокруг проводника, по которому бежит ток, образуется магнитное поле. То есть можно сделать вывод: электрическое поле вызывается всеми зарядами, а магнитное - только вокруг зарядов, которые имеют направленное движение.


Магнитное поле проводника


Если рассматривать поперечное сечение проводника с током, то его магнитные линии будут иметь окружности различного диаметра вокруг проводника.


Чтобы определить направление тока или линий магнитного поля вокруг проводника, следует воспользоваться правилом правого винта :

Если правой рукой обхватить проводник и направить большой палец вдоль него по направлению тока, то согнутые пальцы покажут направление линий магнитного поля.


Силовой характеристикой магнитного поля является магнитная индукция. Иногда линии магнитного поля называют линиями индукции.

Индукция обозначается и измеряется следующим образом: [В] = 1 Тл .


Как Вы можете вспомнить, для силовой характеристики электрического поля был справедлив принцип суперпозиций, то же самое можно сказать и для магнитного поля. То есть результирующая индукция поля равна сумме векторов индукции в каждой точке.


Виток с током


Как известно, проводники могут иметь различную форму, в том числе состоять из нескольких витков. Вокруг такого проводника также образуется магнитное поле. Для его определения следует воспользоваться правилом Буравчика :


Если рукой обхватить витки так, чтобы 4 согнутых пальца их обхватывали, то большой палец покажет направление магнитного поля.



 

Возможно, будет полезно почитать: