О развитии электроэнергетики. География электроэнергетики Основные вехи формирования современного облика электроэнергетической отрасли

Электроэнергетика -- базовая отрасль, развитие которой является непременным условием развития экономики и других сфер жизни общества. В мире производится около 13000 млрд. кВт/ч, из которых только на США приходится до 25%. Свыше 60% электроэнергии в мире производится на тепловых электростанциях (в США, России и Китае -- 70-80%), примерно 20% -- на ГЭС, 17% -- на атомных станциях (во Франции и Бельгии -- 60%, Швеции и Швейцарии -- 40-45%).

Наиболее обеспеченными электроэнергией в расчете на душу населения являются Норвегия (28 тыс. кВт/ч в год), Канада (19 тыс.), Швеция (17 тыс.).

Электроэнергетика вместе с топливными отраслями, включающими разведку, добычу, переработку и транспортировку источников энергии, а также и самой электрической энергии, образует важнейший для экономики любой страны топливно-энергетический комплекс (ТЭК). Около 40% всех первичных энергоресурсов мира расходуется на выработку электроэнергии. В ряде стран основная часть топливно-энергетического комплекса принадлежит государству (Франция, Италия и др.), но во многих странах основную роль в ТЭК играет смешанный капитал.

Электроэнергетика занимается производством электроэнергии, ее транспортировкой и распределением. Особенность электроэнергетики состоит в том, что ее продукция не может накапливаться для последующего использования: производство электроэнергии в каждый момент времени должно соответствовать размерам потребления с учетом нужд самих электростанций и потерь в сетях. Поэтому связи в электроэнергетике обладают постоянством, непрерывностью и осуществляются мгновенно.

Электроэнергетика оказывает большое воздействие на территориальную организацию хозяйства: позволяет осваивать ТЭР удаленных восточных и северных районов; развитие магистральных высоковольтных линий способствует более свободному размещению промышленных предприятий; крупные ГЭС притягивают к себе энергоемкие производства; в восточных районах электроэнергетика является отраслью специализации и служит основой формирования территориально-производственных комплексов.

Считается, что для нормального развития экономики рост производства электроэнергии должен обгонять рост производства во всех других отраслях. Большую часть выработанной электроэнергии потребляет промышленность. По производству электроэнергии (1015,3 млрд. кВт.-ч в 2007 г.) Россия занимает четвертое место после США, Японии и Китая.

По масштабам производства электроэнергии выделяются Центральный экономический район (17,8% общероссийского производства), Восточная Сибирь (14,7%), Урал (15,3%) и Западная Сибирь (14,3%). Среди субъектов РФ по выработке электроэнергии лидируют Москва и Московская область, Ханты-Мансийский автономный округ, Иркутская область, Красноярский край, Свердловская область. Причем электроэнергетика Центра и Урала базируется на привозном топливе, а сибирские регионы работают на местных энергоресурсах и передают электроэнергию в другие районы.

Электроэнергетика современной России главным образом представлена тепловыми электростанциями, работающими на природном газе, угле и мазуте, в последние годы в топливном балансе электростанций возрастает доля природного газа. Около 1/5 отечественной электроэнергии вырабатывают гидроэлектростанции и 15% -- АЭС.

Тепловые электростанции, работающие на низкокачественном угле, как правило, тяготеют к местам его добычи. Для электростанций на мазуте оптимально их размещение рядом с нефтеперерабатывающими заводами. Электростанции на газе ввиду сравнительно низкой величины затрат на его транспортировку преимущественно тяготеют к потребителю. Причем в первую очередь переводят на газ электростанции крупных и крупнейших городов, так как он является более чистым в экологическом отношении топливом, чем уголь и мазут. ТЭЦ (производящие и тепло, и электроэнергию) тяготеют к потребителю независимо от топлива, на котором они работают (теплоноситель при передаче на расстояние быстро остывает).

Самыми крупными тепловыми электростанциями мощностью более 3,5 млн. кВт каждая являются Сургутская (в Ханты-Мансийском автономном округе), Рефтинская (в Свердловской области) и Костромская ГРЭС. Мощность более 2 млн. кВт имеют Киришская (около Санкт-Петербурга), Рязанская (Центральный район), Новочеркасская и Ставропольская (Северный Кавказ), Заинская (Поволжье), Рефтинская и Троицкая (Урал), Нижневартовская и Березовская в Сибири.

Геотермические электростанции, использующие глубинное тепло Земли, привязаны к источнику энергии. В России на Камчатке действуют Паужетская и Мутновская ГТЭС.

Гидроэлектростанции -- весьма эффективные источники электроэнергии. Они используют возобновимые ресурсы, обладают простотой управления и очень высоким коэффициентом полезного действия (более 80%). Поэтому стоимость производимой ими электроэнергии в 5-6 раз ниже, чем на ТЭС.

Гидроэлектростанции (ГЭС) экономичнее всего строить на горных реках с большим перепадом высот, тогда как на равнинных реках для поддержания постоянного напора воды и снижения зависимости от сезонных колебаний объемов воды требуется создание больших водохранилищ. Для более полного использования гидроэнергетического потенциала сооружаются каскады ГЭС. В России созданы гидроэнергетические каскады на Волге и Каме, Ангаре и Енисее. Общая мощность Волжско-Камского каскада -- 11,5 млн. кВт. И он включает 11 электростанций. Самыми мощными являются Волжская (2,5 млн. кВт) и Волгоградская (2,3 млн. кВт). Действуют также Саратовская, Чебоксарская, Воткинская, Иваньковская, Угличская и др.

Еще более мощный (22 млн. кВт) -- Ангаро-Енисейский каскад, включающий самые крупные в стране ГЭС: Саянскую (6,4 млн. кВт), Красноярскую (6 млн. кВт), Братскую (4,6 млн. кВт), Усть-Илимскую (4,3 млн. кВт).

Приливные электростанции используют энергию высоких приливов и отливов в отсеченном от моря заливе. В России действует опытная Кислогубская ПЭС у северного побережья Кольского полуострова.

Атомные электростанции (АЭС) используют высокотранспортабельное топливо. Учитывая, что 1 кг урана заменяет 2,5 тыс. т угля, АЭС целесообразнее размещать вблизи потребителя, в первую очередь в районах, лишенных других видов топлива. Первая в мире АЭС была построена в 1954 г. в г. Обнинске (Калужская обл.). Сейчас в России действует 8 атомных электростанций, из которых самыми мощными являются Курская и Балаковская (Саратовская обл.) по 4 млн. кВт каждая. В западных районах страны действуют также Кольская, Ленинградская, Смоленская, Тверская, Нововоронежская, Ростовская, Белоярская. На Чукотке -- Билибинская АТЭЦ.

Важнейшая тенденция развития электроэнергетики -- объединение электростанций в энергосистемах, которые осуществляют производство, передачу и распределение электроэнергии между потребителями. Они представляют собой территориальное сочетание электростанций разных типов, работающих на общую нагрузку. Объединение электростанций в энергосистемы способствует возможности выбирать наиболее экономичный режим нагрузки для разных типов электростанций; в условиях большой протяженности государства, существования поясного времени и несовпадения пиковых нагрузок в отдельных частях таких энергосистем можно маневрировать производством электроэнергии во времени и пространстве и перебрасывать ее по мере надобности во встречных направлениях.

В настоящее время функционирует Единая энергетическая система (ЕЭС) России. В ее состав входят многочисленные электростанции европейской части и Сибири, которые работают параллельно, в едином режиме, сосредоточивая более 4/5 суммарной мощности электростанций страны. В регионах России восточнее Байкала действуют небольшие изолированные энергосистемы.

Энергетической стратегией России на ближайшее десятилетие предусмотрено дальнейшее развитие электрификации за счет экономически и экологически обоснованного использования ТЭС, АЭС, ГЭС и нетрадиционных возобновляемых видов энергии, повышение безопасности и надежности действующих энергоблоков АЭС.

Промышленность любой страны состоит из большого количества разнообразных отраслей, таких как машиностроение или электроэнергетика. Это те направления, в которых развивается конкретная страна, и у разных государств могут быть различные акценты в зависимости от многих факторов, таких как природные ресурсы, технологическое развитие и так далее. В данной статье речь пойдет об одной очень важной и активно развивающейся на сегодняшний день отрасли промышленности - об электроэнергетике. Электроэнергетика - это отрасль, которая развивалась в течение многих лет постоянно, однако именно в последние годы она начала активно двигаться вперед, подталкивая человечество к использованию более экологичных источников энергии.

Что это такое?

Итак, в первую очередь необходимо разобраться, что вообще представляет собой данная отрасль. Электроэнергетика - это подразделение энергетики, которое отвечает за производство, распределение, передачу и продажу именно электрической энергии. Среди других отраслей данной сферы именно электроэнергетика является самой популярной и распространенной сразу по целому ряду причин. Например, из-за легкости ее дистрибуции, возможности передачи ее на огромные расстояния за кратчайшие промежутки времени, а также из-за ее универсальности - электрическую энергию можно без проблем при необходимости трансформировать в другие такие как тепловая, световая, химическая и так далее. Таким образом, именно развитию данной отрасли огромное внимание уделяют правительства мировых держав. Электроэнергетика - это отрасль промышленности, за которой будущее. Именно так считают многие люди, и именно поэтому вам необходимо более детально ознакомиться с ней с помощью данной статьи.

Прогресс производства электроэнергии

Чтобы вы могли полностью понять, насколько важной является для мира данная отрасль, необходимо взглянуть на то, как происходило развитие электроэнергетики на протяжении всей истории ее существования. Сразу же стоит отметить, что производство электроэнергии обозначается в миллиардах киловатт в час. В 1890 году, когда электроэнергетика только начинала развиваться, производилось всего девять млрд кВт/ч. Большой скачок произошел к 1950 году, когда производилось уже более чем в сто раз больше электроэнергии. С того момента развитие шло гигантскими шагами - каждое десятилетие добавлялось сразу по несколько тысяч миллиардов кВт/ч. В результате к 2013 году мировыми державами производилось в сумме 23127 млрд кВт/ч - невероятный показатель, который продолжает расти с каждым годом. На сегодняшний день больше всего электроэнергии дают Китай и Соединенные Штаты Америки - именно эти две страны имеют наиболее развитые отрасли электроэнергетики. На долю Китая приходится 23 процента вырабатываемой во всем мире электроэнергии, а на долю США - 18 процентов. Следом за ними идут Япония, Россия и Индия - каждая из этих стран имеет как минимум в четыре раза меньшую долю в мировом производстве электроэнергии. Что ж, теперь вам также известна и общая география электроэнергетики - пришло время перейти к конкретным видам этой отрасли промышленности.

Тепловая электроэнергетика

Вы уже знаете, что электроэнергетика - это отрасль энергетики, а сама энергетика, в свою очередь, является отраслью промышленности в целом. Однако разветвление не заканчивается на этом - электроэнергетики имеется несколько видов, некоторые из них очень распространенные и используются повсеместно, другие не так популярны. Существуют и альтернативные области электроэнергетики, где используются нетрадиционные методы, позволяющие добиваться масштабного производства электроэнергии без вреда окружающей среде, а также с нейтрализацией всех негативных особенностей традиционных методов. Но обо всем по порядку.

В первую очередь необходимо рассказать о тепловой электроэнергетике, так как она является самой распространенной и известной во всем мире. Как получается электроэнергия данным способом? Легко можно догадаться, что в данном случае происходит преобразование тепловой энергии в электрическую, а тепловая получается путем сжигания различных видов топлива. Теплоэлектроцентрали можно найти практически в каждой стране - это самый простой и удобный процесс получения больших объемов энергии при малых затратах. Однако именно этот процесс и является одним из самых вредных для окружающей среды. Во-первых, для получения электроэнергии используется природное топливо, которое когда-нибудь гарантированно закончится. Во-вторых, продукты горения выбрасываются в атмосферу, отравляя ее. Именно поэтому и существуют альтернативные методы получения электроэнергии. Однако это еще далеко не все традиционные виды электроэнергетики - есть и другие, и дальше мы сконцентрируемся именно на них.

Ядерная электроэнергетика

Как и в предыдущем случае, при рассмотрении ядерной электроэнергетики можно многое почерпнуть уже из названия. Выработка электроэнергии в данном случае производится на атомных реакторах, где происходит расщепление атомов и деление их ядер - в результате этих действий происходит большой выброс энергии, которая затем и трансформируется в электрическую. Вряд ли кому-то еще неизвестно, что это самая небезопасная электроэнергетика. Промышленность далеко не каждой страны имеет свою долю в мировом производстве ядерной электроэнергии. Любая утечка из такого реактора может привести к катастрофическим последствиям - достаточно вспомнить Чернобыль, а также происшествия в Японии. Однако в последнее время безопасности уделяется все больше внимания, поэтому атомные электростанции строятся и дальше.

Гидроэнергетика

Еще одним популярным способом производства электроэнергии является получение ее из воды. Этот процесс происходит на гидроэлектростанциях, он не требует ни опасных процессов деления ядра атома, ни вредных для окружающей среды сжиганий топлива, но имеет и свои минусы. Во-первых, это нарушение естественного течения рек - на них строятся дамбы, за счет которых создается необходимое течение воды в турбины, благодаря чему и получается энергия. Зачастую из-за строительства дамб осушаются и гибнут реки, озера и другие природные водохранилища, поэтому нельзя сказать, что это идеальный вариант для данной отрасли энергетики. Соответственно, многие предприятия электроэнергетики обращаются не к традиционным, а к альтернативным видам получения электроэнергии.

Альтернативная электроэнергетика

Альтернативная электроэнергетика - это собрание видов электроэнергетики, отличных от традиционных в основном тем, что они не требуют нанесения того или иного вида вреда окружающей среде, а также не подвергают никого опасности. Речь идет о водородной, приливной, волновой и многих других разновидностях. Самым распространенными из них являются ветро- и гелиоэнергетика. Именно на них делается акцент - многие считают, что именно за ними будущее данной отрасли. В чем суть этих видов?

Ветроэнергетика - это получение электроэнергии из ветра. В полях строятся ветряные мельницы, которые работают очень эффективно и позволяют обеспечивать энергией ненамного хуже, чем описанные ранее методы, но при этом для действия ветряков нужен только лишь ветер. Естественно, недостатком данного метода является то, что ветер - это природная стихия, которую невозможно себе подчинить, однако ученые работают над улучшением функциональности ветряных мельниц современности. Что касается гелиоэнергетики, то здесь электроэнергия получается из солнечных лучей. Как и в случае с предыдущим видом, здесь также необходимо работать над увеличением аккумулирующей мощности, так как солнце светит далеко не всегда - и даже если погода безоблачная, в любом случае в определенный момент наступает ночь, когда солнечные панели не способны производить электроэнергию.

Передача электроэнергии

Что ж, теперь вы знаете все основные виды получения электроэнергии, однако, как вы уже могли понять из определения термина электроэнергетики, получением все не ограничивается. Энергию необходимо передавать и распределять. Так, передается по линиям электропередач. Это металлические проводники, которые создают одну большую электрическую сеть во всем мире. Ранее чаще всего использовались воздушные линии - именно их вы можете видеть вдоль дорог, перекинутые от одного столба к другому. Однако в последнее время большую популярность обретают кабельные линии, которые прокладываются под землей.

История развития электроэнергетики России

Электроэнергетика России начала развиваться тогда же, когда и мировая - в 1891 году, когда впервые была удачно осуществлена передача электрической мощности на практически двести километров. В реалиях дореволюционной России электроэнергетика была невероятно слабо развита - годовая выработка электричества на такую огромную страну составляла всего 1,9 млрд кВт/ч. Когда же состоялась революция, Владимир Ильич Ленин предложил реализация которого была начата немедленно. Уже к 1931 году задуманный план был выполнен, однако скорость развития оказалась настолько впечатляющей, что к 1935 году план был перевыполнен в три раза. Благодаря этой реформе уже к 1940 году годовая выработка электроэнергии в России составила 50 млрд кВт/ч, что в двадцать пять раз больше, чем до революции. К сожалению, резкий прогресс был прерван Второй мировой войной, однако после ее завершения работы восстановились, и к 1950 году Советский Союз вырабатывал 90 млрд кВт/ч, что составляло около десяти процентов всеобщей выработки электроэнергии по всему миру. Уже к середине шестидесятых годов Советский Союз вышел на второе место в мире по производству электроэнергии и уступал только Соединенным Штатам. Ситуация оставалась на таком же высоком уровне вплоть до распада СССР, когда электроэнергетика оказалась далеко не единственной отраслью промышленности, которая сильно пострадала из-за этого события. В 2003 году был подписан новый ФЗ об электроэнергетике, в рамках которого в ближайшие десятилетия должно происходить стремительное развитие этой отрасли в России. И страна определенно движется в этом направлении. Однако одно дело - подписать ФЗ об электроэнергетике, и совершенно другое - его реализовать. Именно об этом и пойдет речь далее. Вы узнаете о том, какие на сегодняшний день существуют проблемы электроэнергетики России, а также какие будут выбираться пути для их решения.

Избыток электрогенерирующих мощностей

Электроэнергетика России находится уже в гораздо более хорошем состоянии, чем десять лет назад, так что можно смело сказать, что прогресс идет. Однако на недавно проведенном энергетическом форуме были выявлены основные проблемы этой отрасли в стране. И первая из них - избыток электрогенерирующих мощностей, который был вызван массовой постройкой электростанций низкой мощности в СССР вместо строительства малого количества электростанций высокой мощности. Все эти станции все равно нужно обслуживать, поэтому выхода из ситуации два. Первый - это вывод мощностей из эксплуатации. Этот вариант был бы идеальным, если бы не огромные стоимости такого проекта. Поэтому Россия, скорее всего, будет двигаться в сторону второго выхода, а именно увеличения объема потребления.

Импортозамещение

После введения западных станций промышленность России очень остро ощутила свою зависимость от заграничных поставок - это сильно затронуло и электроэнергетику, где практически ни в одной из современных сфер деятельности полный процесс производства тех или иных генераторов не проходил исключительно на территории РФ. Соответственно, правительство планирует наращивать производственные мощности в нужных направлениях, контролировать их локализацию, а также пытаться максимально избавиться от зависимости от импорта.

Чистый воздух

Проблема заключается в том, что современные российский компании, работающие в сфере электроэнергетики, очень сильно загрязняют воздух. Однако Министерство экологии РФ ужесточило законодательство и стало чаще собирать штрафы за нарушение установленных норм. К сожалению, компании, страдающие от этого, не планируют пытаться оптимизировать свое производство - они бросают все силы на то, чтобы задавить «зеленых» количеством, и требуют смягчения законодательства.

Миллиарды долга

На сегодняшний день суммарный долг пользователей электроэнергии по всей России составляет около 460 миллиардов российских рублей. Естественно, если бы в распоряжении страны были все те деньги, которые ей задолжали, то она могла бы значительно быстрее развивать электроэнергетику. Поэтому правительство планирует ужесточить наказания за просрочки в оплате счетов за электричество, а также будет призывать тех, кто не хочет платить по счетам в будущем, устанавливать собственные солнечные панели и снабжать себя энергией самостоятельно.

Регулируемый рынок

Самая главная проблема отечественной электроэнергетики - это полная регулируемость рынка. В европейских странах регулирование рынка энергетики практически полностью отсутствует, там имеется самая настоящая конкуренция, поэтому отрасль развивается огромными темпами. Все эти правила и регуляции очень сильно тормозят развитие, и в результате РФ уже начала закупки электроэнергии из Финляндии, где рынок практически не регулируется. Единственное решение этой проблемы - переход к модели свободного рынка и полный отказ от регуляции.

Электроэнергетика - одна из составляющих частей экономики, в которой реализуется процесс производства, передачи, распределения и потребления электрической энергии. Электроэнергетика влияет на все сектора экономики, обеспечивая их электроснабжением.

Единая электроэнергетическая система России - это система объединенных электрических объектов (электрических станций, электрических и тепловых сетей, линий электропередач, трансформаторных подстанций, распределительных устройств), связанных единым процессом производства, передачи, распределения и потребления электрической энергии в целях удовлетворения потребностей потребителей. Современная электроэнергетика России состоит из тепловых электростанций (мощностью 149,2 млн. кВт), гидравлических электростанций (мощностью 42,3 млн. кВт) и атомных электростанции (мощностью 22,4 млн. кВт), связанные высоковольтными линиями электропередач (ЛЭП) общей протяженностью более 2,5 млн. км .

Российская электроэнергетика до 1992 года имела вертикально-интегрированную двухуровневую структуру управления: Министерство энергетики и электрификации, производственные объединения энергетики .

В 1992 году был подписан Указ Президента РФ, регламентирующий управление электроэнергетикой в Российской Федерации в условиях приватизации, который установил порядок и особенности акционирования в электроэнергетике :

  1. Образовалось Российское акционерное общество энергетики и электрификации (РАО «ЕЭС России») в уставной капитал вошло:
    • Имущество магистральных линий электропередач напряжением 220 кВ и выше с подстанциями и общесистемными средствами режимной и противоаварийной автоматики;
    • Имущество гидравлических электрических станций мощностью 300 МВт и выше, ГРЭС мощностью 1000 МВт и выше;
    • Имущество центрального диспетчерского управления (ЦДУ) ЕЭС, семь объединенных диспетчерских управлений (ОДУ) энергетических зон страны, производственное объединение (ПО) «Дальние электропередачи»;
    • Региональные акционерные общества электроэнергетики и предприятия электроэнергетики, в которых Российская Федерация имеет не менее 49% акций.
  2. В уставной капитал РАО «ЕЭС России» вносятся акции 70 региональных АО-энерго, 332 строительно-монтажных организаций отрасли, 75 научно-исследовательских и отраслевых проектно-изыскательских институтов, а также специальные учебные заведения отрасли.
  3. ЦДУ, ОДУ энергозон, ПО «Дальние электропередачи», проектные и научно-исследовательские институты, учебные заведения отрасли преобразуются в акционерные общества без их приватизации. Это сохраняло за государством контроль над управлением и стратегией развития отрасли.
  4. 295 магистральных линий электропередач напряжением 220 кВ и выше с подстанциями по 7 энергозонам страны.
  5. 51 тепловая и гидравлическая электростанция по 7 энергозонам ЕЭС, а также энергетические объекты диспетчерского управления отрасли. Эти электростанции составляют основу ФОРЭМ (федеральный оптовый рынок электроэнергии (мощностей)) .

В период 1992 - 2008 годы электроэнергетика оставалась монополизированной отраслью экономики страны (рисунок 1).

Технологической основой работы являлась электрическая сеть РАО «ЕЭС России» и сети снабжающих организаций. Количество субъектов ФОРЭМ не ограничивалось, любая организация, которая соблюдала все правила, могла стать субъектом ФОРЭМ. В то время поставщиками электроэнергии и мощности на ФОРЭМ являлись 16 ТЭС, 9 ГЭС, 8 АЭС и 7 энергоизбыточных АО-энерго. Покупали электроэнергию с ФОРЭМ 59 АО-энерго, и пять потребителей - субъекты рынка. В пределах единого рыночного пространства осуществлялись поставки электрической энергии от производителей до потребителей при организованном руководстве РАО «ЕЭС России» и диспетчерского управления ЦДУ ЕЭС России.

Рисунок 1 Структура электроэнергетики с 1992 по 2008 год

Продажа электрической энергии (мощностей) каждым субъектом ФОРЭМ, осуществлялось только в границах балансовой принадлежности электрической сети продавца по тарифам, установленным Федеральной службой по тарифам (ФСТ России).

На рынке ФОРЭМ складывалась такая ситуация, что электроэнергия распределялась на собственную территорию и фактически электростанция, производящая эту энергию, не могла выйти на рынок (рисунок 2) .

Рисунок 2. Структура рынка электроэнергии до 2008 года

В представленных выше рисунках мы видим, что в стране существовало вертикально-интегрированное управление Единой энергетической системой .

  1. Вертикально-интегрированная схема имела ряд особенностей:
  2. Возможность оптимизации генерирующих мощностей;
  3. Монополия на электроснабжение;
  4. Государственное регулирование тарифов;
  5. Снижение инвестиционных рисков для энергокомпаний;
  6. Развитие элементов технологической цепи осуществлялось по единому плану;
  7. Возможность концентрации финансовых ресурсов.

В 2000 году была задумана реформа в отрасли электроэнергетики, результатом которой являлось: низкая эффективность государственного регулирования отрасли, производства и потребления электрической энергии, снижение управляемости и эффективности функционирования, дефицит инвестиционных ресурсов, снижение надежности электроснабжения, кризисное состояние научно-технического развития, ухудшение показателей устойчивости, отсутствие эффективной системы корпоративного управления.

В качестве основы реформирования электроэнергетики была принята программа ее реструктуризации, с разделением всех видов деятельности на монопольные (передача электрической энергии, оперативно-диспетчерское управление) и конкурентные (генерация, сбыт, ремонтное обслуживание, непрофильные виды деятельности).

Цель реформы отрасли электроэнергетики заключалась в образовании конкуренции, снижение тарифов на электроэнергию, в повышении энергетической безопасности страны, надежности энергоснабжения потребителей и эффективности работы отрасли, обеспечении инвестиционной привлекательности электроэнергетики и соблюдении экологических требований.

Предполагалось создание полноценного конкурентного оптового рынка электроэнергии, формирование розничных рынков электрической энергии, обеспечивающих надежное энергоснабжение потребителей и обеспечивающих понижение тарифов на электроэнергию.

Передача электроэнергии по магистральным (системообразующим) и распределительным сетям, как монопольная деятельность, регулируется государством, а всем участникам рынка обеспечивается равный доступ к услугам естественных монополий (рисунок 3).

Рисунок 3. Рынок электроэнергетики России после завершения реформирования 2008 года

В ходе реформы электроэнергетики выделили компании специализированные на определенных видах деятельности:

Производство электроэнергии (генерация) - коммерческая деятельность хозяйствующего субъекта, занимающегося производством и продажей электрической энергии (мощности), компания направляет на оптовый или розничный рынок электроэнергию для дальнейшей продажи (покупки).

Передача электрической энергии (мощности) - оказание сетевыми организациями - субъектам оптового рынка услуги по передаче электроэнергии (мощности) по магистральным линиям электропередач.

Распределение электрической энергии (мощности) - оказание коммерческими организациями - субъектам оптового и розничного рынка услуг по поставке электрической энергии (мощности) по сетям.

Сбыт электрической энергии (мощности) - продажа электрической энергии потребителям на основе договоров энергоснабжения, получающих электрическую энергию от генерирующих или сбытовых компаний.

Отношения на конкурентном оптовом рынке складывается на основе свободного коммерческого взаимодействия, но по установленным правилам.

Магистральные сети в результате перешли к образованной Федеральной сетевой компании, распределительные сети - под контроль Межрегиональной распределительной сетевой компании (МРСК), Системному оператору переданы активы региональных диспетчерских управлений.

Оптово и территориально генерирующие компании находятся в собственности частных лиц, а гидроэлектростанции объединены в компанию РусГидро, которая находится под контролем государства, эксплуатация и обслуживание АЭС доверены ОАО «Концерн Росэнергоатом», подразделению Госкорпорации «Росатом». ОГК объединяют электростанции, специализированные на производстве электрической энергии, в ТГК входят электростанции производящие как тепловую, так и электрическую энергию.

Для минимизации монопольных злоупотреблений все электростанции ОГК находятся в разных регионах страны. В процессе реформирования генерирующие компании (ОГК) стали крупнейшими участниками оптового рынка. Состав ОГК подобран следующим образом: по мощности, годовому доходу, по степени изношенности основных фондов и количеству потребляемых ресурсов.

Территориальные генерирующие компании (ТГК) объединяют электростанции нескольких соседних регионов, не вошедшие в ОГК - в основном теплоэлектроцентрали, производящие как электроэнергию, так и теплоэнергию. Данные генерирующие компании продают электрическую и тепловую энергию в своих регионах.

Все продавцы и покупатели электрической энергии, соблюдающие установленные правила и производящие электрическую энергию или являющиеся посредниками между производителями и покупателями, обеспечены правом выхода на оптовый рынок электроэнергии.

После реформирования акционерные общества энергетики и электрификации (АО-энерго) переданы в ведения региональных сетевых компаний, которым присвоен статус гарантирующих поставщиков. Они обязаны заключать договора на электроснабжение с любыми потребителями, находящиеся в их зоне. Гарантирующие поставщики до 2011 года осуществляли поставку электроэнергии на основе регулируемых тарифов, однако с 1 января 2011 года электрическая энергия в полном объёме поставляется по свободным (нерегулируемым) ценам, но это не касается населения, которое по-прежнему получает электрическую энергию по регулируемым тарифам.

Сбытовой деятельностью может заниматься коммерческая организация, удовлетворяющая установленным требованиям. Независимые сбытовые организации поставляют электрическую энергию потребителям по договорным ценам. Покупать электрическую энергию у независимой электросбытовой организации имеют права потребители, удовлетворяющие требованиям минимальному объему потребления электроэнергии и оснащенные приборами контроля и учета электрической энергии.

Магистральные линии электропередач являются основой энергетической системы России. С целью сохранения и укреплению технологического единства магистральные линии электропередач переданы Федеральной сетевой компании, которая обеспечивает:

  • взаимодействие на оптовом рынке электрической энергии производителей и потребителей;
  • подключение регионов к единой электрической сети;
  • равный выход на оптовый рынок электрической энергии продавцов и покупателей.

Федеральная сетевая компания является государственной компанией и услуги по передачи и распределению электрической энергии являются регулируемыми.

Прогнозирование производства и потребления электрической энергии обеспечивает Системный оператор и всем участникам рынка предоставляет услуги по управлению режимами работы энергетической системы. Деятельность системного оператора контролируется государством, и оплата услуг за его деятельность утверждается уполномоченным государственным органом. Задачами системного оператора является управление режимами работы Единой энергетической системы России, также может обеспечить баланс производства и потребления электроэнергии, контроля бесперебойности электроснабжения и качества электроэнергии.

Администратор торговой системы (АТС) осуществляет деятельность по организации торговли на оптовом рынке электроэнергии (мощности), связанную с заключением и исполнением договоров на поставку электроэнергии .

На сегодняшний день в руках частных компаний находятся: сбыт, администрирование торговой системы и ремонтные (сервисные) организации. Из правоустанавливающих документов можно сделать вывод, что администратор торговой системы и сбытовые компании не производят и не передают электроэнергию. Администратор торговой системы отвечает за юридические составляющие при продаже электрической энергии, а сбытовые компании являются посредниками между производителями и потребителями электрической энергии. Остальные сферы деятельности в электроэнергетике, такие как: распределение и передача электрической энергии, атомные и изолированные электростанции, находятся в руках государства, однако каждый посредник между производителями и потребителями электрической энергии имеет свою составляющую в тарифе на электрическую энергию.

С 1 января 2011 г. электрическая энергия в полном объеме поставляется по свободным (нерегулируемым) ценам, то есть, рынок электроэнергии либерализирован, но это не касается населения, которое по-прежнему получает её по регулированным тарифам.

После реформирования отрасли цена электроэнергии устанавливается по наибольшему тарифу, который указывает последний отбираемый на оптовом рынке поставщик. В результате реформы предполагалось, что цены начнут снижаться из-за конкуренции в отрасли. На сегодняшний день продолжается рост цен на электроэнергию, что приведет к монополизации рынка.

Рассчитаем себестоимость электроэнергии для каждого вида электростанций - ТЭС, ГЭС и АЭС. Количество электроэнергии Э отп, отпускаемой отдельной электростанцией на рынок, и объем электроэнергии Э пол, получаемой потребителями с рынка, устанавливается в соответствии с балансом по субъектам рынка .

Возьмем средние показатели по каждой электростанций:

  • ТЭС установленной мощностью 200МВт работает в полупиковом режиме с использованием установленной мощности в течение 4740 часов в год;
  • ГЭС установленной мощностью 800 МВт работает в пиковой части графика нагрузки с использованием установленной мощности в течение 3570 часов в год;
  • АЭС установленной мощностью 1000 МВт работает в базовой части графика электрической нагрузки с использованием установленной мощности в течение 6920 часов в год.

Годовой отпуск электроэнергии на рынок определятся путем умножения установленной мощности электростанции и годового числа часов работы за вычетом расхода электроэнергии на собственные нужды электростанции.

Таблица 1 - Технико-экономические показатели работы электростанций, отпускающих электроэнергию на рынок за 2011 год

Показатель

1. Технические показатели:

2. Показатели для расчета себестоимости производства электроэнергии:

Удельный расход условного топлива в, г/(кВт*ч)

Цена угля Ц, руб./т

Затраты на ядерное топливо, млн. руб.

Стоимость основных производственных фондов С, млрд. руб.

Затраты на производственные услуги, З п.у. , млн. руб.

Затраты на вспомогательные материалы З в.м. , млн. руб.

Прочие затраты З пр. , млн. руб.

Ставки налогов, %

На добавленную стоимость

На прибыль

Платежи в государственные внебюджетные фонды, % от фонда оплаты труда

Рассчитаем себестоимость электроэнергии, вырабатываемую на электрической станции.

Затраты на топливо оцениваются по выражению:

где в - удельный расход топлива на отпуск электроэнергии, г/(кВт*ч);

Ц - цена топлива, руб./т.

Годовое количество электроэнергии, отпускаемой электростанцией на рынок:

где Э отп - годовое количество электроэнергии, отпускаемой на рынок, млн. кВт*ч;

P- установленная мощность электростанции, МВт;

t- число часов работы в год, тысяч часов;

Топливные затраты на отпуск электроэнергии электростанцией на рынок:

Амортизационные отчисления электростанции оцениваются в размере 3,5% от стоимости основных производственных фондов:

где З амр - амортизация основных фондов,%;

С - стоимость основных производственных фондов, млрд. руб.

Годовой фонд оплаты труда З о.т. определяется, исходя из нормативной численности промышленно-производственного персонала на 1 МВт, среднемесячной оплаты труда и установленной мощности электростанции:

где Н - нормативная численность персонала на 1 МВт установленной мощности, человек;

Р УСТ - установленная мощность электростанции, МВт;

З О.Т. - среднемесячная оплата труда, тыс. руб.;

М - количество проработанных месяцев в году, месяц.

Платежи в пенсионный фонд, фонды социального страхования и занятости рассчитываются:

где П ПФР - платежи в ПФР, %;

З о.т. - годовой фонд оплаты труда; тыс. руб.;

где П ФСС - платежи в ФСС, %.

где П ФФОМС - платежи в ФФОМС, %.

где П ТФОМС - платежи в ТФОМС, %.

Затраты на технологические нужды, представим в виде формулы:

где З тех.н. - затраты на технологические нужды, млн. руб.;

З в.м. - затраты на вспомогательные нужды, млн. руб.;

З п.у. - затраты на производственные нужды, млн. руб.;

З пр. - прочие затраты, млн. руб.

Себестоимость электроэнергии, производимой на электростанции в год:

Себестоимость электроэнергии за 1 МВт*ч, отпускаемой электростанцией на рынок, составляет:

Рассчитаем себестоимость электроэнергии, вырабатываемую на тепловой электрической станции. Годовое количество электроэнергии, отпускаемой ТЭС на рынок:

Топливные затраты на отпуск электроэнергии ТЭС на рынок:

Амортизационные отчисления ТЭС оцениваются в размере 3,5% от стоимости основных производственных фондов:

Годовой фонд оплаты труда З о.т. определяется, исходя из нормативной численности промышленно-производственного персонала, в размере 1,6 человек на 1 МВт, среднемесячной оплаты труда в размере 18 тысяч рублей в месяц и установленной мощности ТЭС:

Платежи в пенсионный фонд, фонды социального страхования и занятости составляют:

Себестоимость электроэнергии, производимой на ТЭС в год:

Себестоимость электроэнергии за 1 МВт*ч, отпускаемой ТЭС на рынок, составляет:

По аналогии рассчитаем себестоимость электроэнергии, вырабатываемой на ГЭС. Годовое количество электроэнергии, отпускаемой ГЭС на рынок:

Амортизационные отчисления ГЭС оцениваются в размере 3,5% от стоимости основных производственных фондов:

Годовой фонд оплаты труда З о.т. определяется, исходя из нормативной численности промышленно-производственного персонала, в размере 0,3 человек на 1 МВт, среднемесячной оплаты труда в размере 18 тысяч рублей в месяц и установленной мощности ГЭС:

Затраты на технологические нужды составляют:

Себестоимость электроэнергии, производимой на ГЭС в год:

Себестоимость электроэнергии за 1 МВт*ч, отпускаемой ГЭС на рынок, составляет:

По аналогии рассчитаем себестоимость электроэнергии, вырабатываемой на АЭС. Годовое количество электроэнергии, отпускаемой АЭС на рынок:

Амортизационные отчисления АЭС оцениваются в размере 3,5% от стоимости основных производственных фондов:

Годовой фонд оплаты труда З о.т. определяется, исходя из нормативной численности промышленно-производственного персонала, в размере 1 человек на 1 МВт, среднемесячной оплаты труда в размере 22 тысяч рублей в месяц и установленной мощности АЭС:

Суммарные платежи в пенсионный фонд, фонды социального страхования и занятости составляют:

Затраты на вспомогательные материалы, производственные и прочие затраты устанавливаются в размере:

Себестоимость электроэнергии, производимой на АЭС:

Себестоимость электроэнергии за 1 МВт*ч, отпускаемой АЭС на рынок, составляет:

Тариф за электроэнергию складывается из следующих составляющих: сумма оптовой цены электроэнергии, услуги передачи по магистральным сетям, услуги транспортировки электроэнергии по распределительным сетям, услуги поставщиков оптового рынка электрической энергии и мощности, услуги энергосбытовых компаний за передачу электроэнергии.

Таким образом, на сегодняшний день, тариф на электрическую энергию постоянно растет, и для некоторых групп потребителей достигает от 3-х до 5-ти рублей за кВт*ч. Повышение тарифа на электроэнергию, зависит от цены на электроэнергию на розничном рынке, а также от сетевой и сбытовой составляющей (рисунок 4,5).

Рисунок 4. Тариф на передачу электрической энергии по Республики Татарстан, коп./кВт.ч

Рисунок 5. Сбытовая надбавка по Республики Татарстан, коп./кВт.ч

Таблица 2. Конечные цены на электрическую энергию по Республики Татарстан за 12 месяцев 2011 года (руб./МВт.ч)

Существенное повышение тарифа на электрическую энергию поднимает вопрос о необходимости поиска путей снижения тарифа для потребителей электрической энергии. Одним из направлений может стать строительство малой генерации. За счет строительства малой электростанции потребитель выигрывает от дальнейшей переплаты за электроэнергию сетевым и энергосбытовым компаниям, а также обеспечивает надежное и бесперебойное снабжение электрической энергией производство.

В последнее время в России появляются все новые потребители электрической энергии - это промышленные предприятия, предприятия малого и среднего бизнеса. Однако, для того, что бы присоединиться к электрической сети, необходимо заключить договор на техническое присоединение. Тариф на техническое присоединение за последнее время существенно вырос (Рисунок 6).

Рисунок 6. Тариф на техническое присоединение к сети и стоимость строительство малой генерации, тыс.руб./кВт.ч

Данные рисунка позволяют говорить, что техническое присоединение к сети и строительство новой генерации в Центральной части России различается примерно в два раза. 35% потребителей электрической энергии находятся в Центральной части России.

Определим себестоимость электроэнергии для малой электростанции мощностью 20 МВт, которая работает в базовой части графика нагрузки с использованием установленной мощности в течение 4740 часов в год. Стоимость основного оборудования возьмем из расчета 35 тыс. руб. кВт.

Таблица 3. Технико-экономические показатели малой электростанции

Показатель

1. Технические показатели:

Установленная мощность Р уст, МВт

Число часов работы t, тысяч часов в год

Расходы электроэнергии на собственные нужды СН, %

2. Показатели для расчета себестоимости производства электроэнергии. Переменные затраты:

Удельный расход газа на 1 кВт (куб.м.)

Цена газа Ц, руб./куб.м.

Постоянные затраты:

Амортизация основных фондов З ам, %

Стоимость основных производственных фондов, млн. руб.

Затраты на производственные услуги, З П.У. , млн. руб.

Затраты на вспомогательные материалы З В.М. , млн. руб.

Прочие затраты З ПР. , млн. руб.

Годовой отпуск электроэнергии определятся путем умножения установленной мощности электростанции и годового числа часов работы за вычетом расхода электроэнергии на собственные нужды электростанции:

Расход газа на производство 1 кВт*ч электроэнергии составит 0,3 куб.м., для 99,8 млн. кВт*ч потребуется 30 млн. куб. м. газа.

Затраты на газ оценивается по выражению:

где в - удельный расход газа на отпуск электроэнергии; Ц - цена топлива.

Амортизационные отчисления оцениваются в 5% от основных производственных фондов:

Затраты на производство 99,8 млн. кВт*ч электроэнергии составят:

Себестоимость электроэнергии за 1 кВт*ч составляет:

Из этого следует, что себестоимость электроэнергии произведенной на малой электростанции составляет 1,9 рублей/(кВт*ч) при использовании в качестве сырья - газ.

Зарубежные энергетические компании предлагают строительство малых электростанций из расчета 35 тысяч рублей/(кВт*ч), строительство электростанции установленной мощности 20 МВт обойдется примерно в 700 млн. рублей.

Покупка электрической энергии из сети в количестве 100 млн. кВт*ч, предприятием, на сегодняшний день обойдется примерно от 300 до 500 млн. рублей. Из этого можно сделать вывод, что строительство малой электростанции перспективно и окупаемость составит не более 5 лет.

Литература

  1. Максимов Б.К., Молодюк В.В. Расчет экономической эффективности работы электростанций на рынке электроэнергии. М.: Издательство МЭИ, 2002. 121 с.
  2. Фомина В.Н. Экономика энергетики. М.: ГУУ, 2005.
  3. Об организации управления электроэнергетическим комплексом Российской Федерации в условиях приватизации: Указ Президента Российской Федерации от 15.02.1992 года [электронный ресурс]. Доступ из справ.-правовой системы «КонсультантПлюс».
  4. Кузовкин И.А. Реформирование электроэнергетики и энергетической безопасности. М.: ОАО «Институт микроэкономики», 2006. 359 с.;
  5. Бахтеева Н.З. Рыночные основы функционирования отрасли (на примере электроэнергетики). Казань; 2006.-364 с.;
  6. О реформировании электроэнергетики Российской Федерации: Постановление Правительства РФ от 11 июля 2001 года № 523 [электронный ресурс]. Доступ из справ.-правовой системы «КонсультантПлюс».
  7. Российский статистический ежегодник 2007-2011, Стат. Сборник. М.: Госкомстат, 2012.

Bibliography

  1. Maksimov B.K., Molodyuk V.V. Cost-efficiency analysis of electric power stations in the electric power market. M.: MEI Publishing 2002. 121 p.
  2. Fomin V.N. Energy saving. M.: SUM, 2005.
  3. On managing the electric power complex of the Russian Federation in privatization: the RF Presidential Decree of 15.02.1992 . Access from ref.-legal system «ConsultantPlus».
  4. Kuzovkin I.A. Reforming the electric power sector and energy security. M.: «Institute of Microeconomics» OJSC, 2006. 359 p.
  5. Bakhteeva N.Z. Market foundations of industry functioning (exemplified by electric power industry). Kazan, 2006.-364 p.
  6. On reforming the Russian Federation electric power industry: the RF Government Resolution of 11 July 2001 № 523 . Access from ref.-legal system «ConsultantPlus».
  7. Russian Statistics Yearbook 2007-2011, Stat. Book. M.: Goskomstat, 2012.

Analysis of the modern electric power industry structure

The article analyzes the electric power before and after the period of the reform. The author calculated the cost of electrical energy generated by various types of power plants, the conclusion of a significant overestimate of the tariff for electricity for consumers. The article concludes that one of the mechanisms for lowering the tariff for electric energy may be the development of small generation.

Key words:

Электроэнергетика - базовая инфраструктурная отрасль, снабжающая электричеством и теплом все остальные сектора хозяйства.

С энергопотреблением прямо связаны и уровень социально-экономического развития, и общая деловая активность, и жизнь каждого человека.

Только за последнее десятилетие производство электроэнергии в мире выросло почти в 1,5 раза. Заметные изменения происходят в соотношении используемых видов топлива и в географической структуре глобального энергетического рынка.

Двумя крупнейшими производителями электроэнергии, далеко опережающими всех остальных, являются Китай и США.

Электроэнергетика - базовая инфраструктурная отрасль, в которой реализуются процессы производства, передачи, распределения электроэнергии. Она имеет связи со всеми секторами экономики, снабжая их произведенными электричеством и теплом и получая от некоторых из них ресурсы для своего функционирования (рис. 1).

Рис. 1. Электроэнергетика в современной экономике

Источник: Экономика и управление в электроэнергетике. Электротехнический портал РФ.

Роль электроэнергетики в ХХ I в. остается исключительно важной для социально-экономического развития любой страны и мирового сообщества в целом. Энергопотребление тесно связано с деловой активностью и уровнем жизни населения.

Научно-технический прогресс и появление новых секторов и отраслей экономики, совершенствование технологий, повышение качества и улучшение условий жизни людей ведут к расширению сфер использования электроэнергии и повышению требований к надежному и бесперебойному энергоснабжению.

Особенности электроэнергетики как отрасли обусловлены спецификой ее основного продукта. Электроэнергия по своим свойствам подобна услуге: время ее производства совпадает со временем потребления.

Электроэнергетика должна быть готова к выработке, передаче и поставке электроэнергии в момент появления спроса, в том числе в пиковом объеме, располагая для этого необходимыми резервными мощностями и запасом топлива.

Чем больше максимальное (хотя бы и кратковременное) значение спроса, тем больше должны быть мощности, чтобы обеспечить готовность к оказанию услуги. (Ситуация изменится, если появятся эффективные технологии хранения электроэнергии. Пока это в основном аккумуляторы разных типов, а также гидроаккумулирующие станции.)

Невозможность хранения электроэнергии в промышленных масштабах предопределяет технологическое единство всего процесса ее производства, передачи и потребления. Вероятно, это единственная отрасль в современной экономике, где непрерывность производства продукции должна сопровождаться таким же непрерывным ее потреблением. В силу этой особенности в электроэнергетике существуют жесткие технические требования к каждому этапу технологического цикла, в том числе по частоте электрического тока и напряжению.

Принципиальной особенностью электрической энергии как продукта, отличающей ее от всех других видов товаров и услуг, является то, что ее потребитель может повлиять на устойчивость работы производителя.
Потребности экономики и общества в электрической энергии существенно зависят от погодных факторов, времени суток, технологических режимов различных производственных процессов в отраслях-потребителях, особенностей домашних хозяйств, даже от программы телепередач.

Различия между максимальным и минимальным уровнями потребления определяет потребность в так называемых резервных мощностях, которые включаются только тогда, когда уровень потребления достигает определенного значения.

Экономические характеристики производства электроэнергии зависят от типа электростанции, степени ее загрузки и режима работы, вида топлива. При прочих равных условиях в наибольшей степени востребуется электроэнергия тех станций, которые генерируют ее в нужное время и в нужном объеме с наименьшими издержками.

С учетом всех этих особенностей принято объединять устройства, производящие энергию (генераторы), в единую энергетическую систему, что обеспечивает сокращение суммарных издержек производства и уменьшает потребность в резервировании производственных мощностей. Система нуждается в операторе, который выполняет координирующие функции. Он регулирует график и объем как производства, так и потребления электроэнергии.

Системный оператор принимает решения на основании рыночных сигналов от производителей (о возможностях и стоимости производства электроэнергии) и от потребителей (о спросе на нее в определенные временные интервалы). В конечном счете системный оператор должен обеспечить надежную и безопасную работу энергосистемы, эффективное удовлетворение спроса на электроэнергию. Его деятельность отражается на производственных и финансовых результатах всех участников рынка электроэнергии, а также на их инвестиционных решениях.

Основными производителями электроэнергии являются:
тепловые электростанции (ТЭС), где тепловая энергия, образующаяся при сжигании органического топлива (уголь, газ, мазут, торф, сланцы и т.д.), используется для вращения турбин, приводящих в движение электрогенератор.

Возможность одновременного производства тепла и электроэнергии привела к распространению в ряде стран централизованного теплоснабжения на ТЭЦ;

гидроэлектростанции (ГЭС), где в электроэнергию преобразуется механическая энергия потока воды с помощью гидравлических турбин, вращающих электрогенераторы;

атомные электростанции (АЭС), где в электроэнергию преобразуется тепловая энергия, полученная при цепной ядерной реакции радиоактивных элементов в реакторе.

Три основных типа электростанций определяют виды используемых энергоресурсов. Их принято подразделять на первичные и вторичные, возобновляемые и невозобновляемые.

Первичные энергоносители - это сырьевые материалы в их естественной форме до проведения какой-либо технологической обработки, например каменный уголь, нефть, природный газ и урановая руда. В разговорной речи эти материалы называют просто первичной энергией. К таковой относятся также солнечное излучение, ветер, водные ресурсы.

Вторичная энергия - это продукт переработки, «облагораживания» первичной, например бензин, мазут, ядерное топливо.

Некоторые виды ресурсов могут относительно быстро восстанавливаться в природе, они называются возобновляемыми: дрова, камыш, торф и прочие виды биотоплива, гидропотенциал рек. Ресурсы, не обладающие таким качеством, называются невозобновляемыми: уголь, сырая нефть, природный газ, нефтеносный сланец, урановая руда. По большей части они являются полезными ископаемыми. Энергия солнца, ветра, морских приливов относится к неисчерпаемым возобновляемым энергетическим ресурсам.

В настоящее время наиболее распространенным видом технологического топлива в мировой электроэнергетике выступает уголь. Это объясняется относительной дешевизной и широкой распространенностью запасов данного вида топлива.

Однако транспортировка угля на значительные расстояния ведет к большим издержкам, что во многих случаях делает его использование нерентабельным. При производстве энергии с использованием угля высок уровень выброса в атмосферу загрязняющих веществ, что наносит существенный вред окружающей среде. В последние десятилетия ХХ в. появились технологии, позволяющие использовать уголь для производства электроэнергии с большей эффективностью и меньшим ущербом для окружающей среды.

Расширение использования газа в мировой электроэнергетике за последние годы объясняется существенным ростом его добычи, появлением высокоэффективных технологий производства электроэнергии, основанных на применении данного вида топлива, а также ужесточением политики по охране окружающей среды.

Все большее распространение получает использование урана. Это топливо обладает колоссальной эффективностью по сравнению с прочими сырьевыми источниками энергии. Однако применение радиоактивных веществ сопряжено с риском масштабного загрязнения окружающей среды в случае аварии. Кроме того, возведение АЭС и утилизация отработанного топлива чрезвычайно капиталоемки. Развитие этого вида энергетики осложняется и тем, что пока немногие страны могут обеспечить подготовку научных и технических специалистов, способных разработать технологии и обеспечить квалифицированную эксплуатацию АЭС.

Большое значение в структуре источников электроэнергии сохраняют гидроресурсы, хотя их доля за последние десятилетия несколько сократилась. Преимущества этого источника в его возобновляемости и относительной дешевизне.

Но возведение гидростанций оказывает необратимое воздействие на окружающую среду, так как обычно требует затопления значительных территорий при создании водохранилищ. Кроме того, неравномерность распределения водных ресурсов на планете и зависимость от климатических условий ограничивают их гидроэнергетический потенциал.

Существенное сокращение использования нефти и нефтепродуктов для производства электроэнергии за последние тридцать лет объясняются как ростом стоимости данного вида топлива, высокой эффективностью его применения в других отраслях, так и дороговизной его транспортировки на значительные расстояния, а также возросшими требованиями к экологической безопасности.

Растет внимание к возобновляемым источникам энергии. В частности, активно разрабатываются технологии использования энергии солнца и ветра, потенциал которых огромен. Правда, на сегодняшний день использование солнечной энергии в промышленных масштабах в большинстве случаев оказывается менее эффективным по сравнению с традиционными видами ресурсов.

Что касается энергии ветра, в развитых странах (прежде всего под влиянием экологических движений) ее применение в электроэнергетике значительно увеличилось. Нельзя не упомянуть также геотермальную энергию, которая может иметь серьезное значение для некоторых государств или отдельных регионов (Исландии, Новой Зеландии, в России - для Камчатки, Ставропольского и Краснодарского краев, Калининградской области). Развитие производства электроэнергии на основе возобновляемых ресурсов пока еще требует государственных дотаций.

В конце XX - начале XXI в. резко повысился интерес к биоэнергетическим ресурсам. В отдельных странах (например, в Бразилии) производство электроэнергии на биотопливе составило заметную долю в энергетическом балансе. В США была принята специальная программа субсидирования биотоплива. Но существуют и сомнения в перспективах данного направления электроэнергетики. Они касаются прежде всего эффективности использования таких природных ресурсов, как земля и вода; так, отвод обширных площадей пахотной земли под производство биотоплива внес свой вклад в удвоение цен на продовольственное зерно.

Представление об изменениях в структуре генерации электроэнергии за последние десятилетия дает рис. 2.

Рис. 2. Изменения в структуре генерации по видам топлива, %
1973 г .

2011 г .

* Включая возобновляемые геотермальную, солнечную, ветровую, приливную энергии, биотопливо и отходы и т.п.
Источник : International Energy Agency. 2013 Key World Energy Statistics. Paris 2013.

В настоящее время, как и в 1973 г., подавляющая часть выработки электроэнергии приходится на органические виды топлива. Однако их доля уменьшилась с 75% до 68%. При этом заметно возрос удельный вес атомной энергетики - с 3% до 13%, прочих возобновляемых ресурсов - с 1% до 4%. Роль гидроэнергетики снизилась.

Наиболее драматические сдвиги произошли внутри органических видов топлива. Резко упала доля нефти - с 25% до 5%. При этом выросли показатели природного газа - с 12% до 22% - и такого традиционного вида топлива, как уголь - с 38% до 41%. Последний продолжает оставаться главным ресурсом для выработки электроэнергии в мире.

Структура глобального рынка
За последнее десятилетие производство электроэнергии в мире выросло почти в 1,5 раза, достигнув в 2012 г. 21 трлн кВт-ч (рис. 3).

Рис. 3. Мировое производство электроэнергии за 2000-2012 гг.,
млрд . к Вт - ч

Источник D . C .

Крупнейшими производителями электроэнергии в мире являются Китай (4,7 трлн кВт-ч) и США (4,3 кВт-ч), значительно опережающие по этому показателю остальные страны (рис. 4).

Рис. 4. Крупнейшие производители электроэнергии в 2011 г., млрд кВт-ч

Источник : U.S. Energy Information Administration. International Energy Statistics. Electricity.
U.S. Department of Energy. Wash.
D
. C .

За последние десятилетия произошли заметные региональные сдвиги в производстве электроэнергии (рис. 5). Существенно сократилась доля развитых стран (ОЭСР) - с 73% в 1973 г. до 49% в 2011 г. Одновременно выросли доли развивающихся стран Африки, Латинской Америки и Азии, прежде всего Китая, на который теперь приходится более 20% мирового производства электроэнергии (в 1973 г. - 3%).

Рис. 5. Региональные сдвиги в производстве электроэнергии, %
1973 г .

2011 г .

* Без Китая .
Источник : International Energy Agency. 2013 Key World Energy Statistics. Paris 2013.

Интересно отметить, что крупнейшие производители электроэнергии не всегда являются и крупнейшими ее экспортерами. Так, в список ведущих продавцов входят лишь Франция, Россия, Канада и Китай, а США и Бразилия являются одновременно ведущими в мире покупателями электроэнергии (табл. 1).



Китай
Китай - одна из немногих стран в мире, где подавляющая часть электроэнергии вырабатывается на угле (до 80%). Довольно значительна роль ГЭС (15%), а вот доля атомной энергетики и других видов генерации минимальна.

Рис. 6.

Источник : U.S. Energy Information Administration. International Energy Statistics. Electricity.
U.S. Department of Energy. Wash.
D
. C .

Основным органом, ответственным за регулирование электроэнергетики Китая, является Государственная комиссия по регулированию электроэнергетики (ГКРЭ), созданная в 2002 г. К компетенции ГКРЭ относятся:
· общее регулирование электроэнергетики страны, создание прозрачной системы регулирования и прямое управление региональными подразделениями ГКРЭ;
· разработка нормативно-правовой базы отрасли и правил рынков электроэнергии;
· участие в разработке планов развития электроэнергетики и рынков электроэнергии;
· мониторинг работы рынков, обеспечение добросовестной конкуренции на рынке, регулирование неконкурентных видов генерации и деятельности по передаче электроэнергии;
· участие в разработке и обеспечение применения технических стандартов и стандартов безопасности, количественных и качественных нормативов в электроэнергетике;
· контроль соблюдения экологического законодательства;
· внесение, исходя их рыночных условий, предложений по тарифообразованию в государственный орган, ответственный за ценообразование, пересмотр уровней тарифов, регулирование тарифов и сборов за системные услуги;
· расследование нарушений нормативно-правовых актов участниками рынка и урегулирование споров между ними;
· контроль внедрения положений политики по обеспечению всеобщей электрификации;
· организация исполнения программ реформы отрасли в соответствии с указаниями Государственного совета.

В секторе производства электроэнергии основными игроками являются:
5 групп генерирующих компаний, образованных в результате реорганизации Государственной энергетической корпорации по принципу равномерности распределения активов. Эти группы компаний контролируются на национальном уровне, и их доля в общей выработке составляет 39%;
иные национальные генерирующие компании (10%);
региональные государственные энергетические компании (45%);
независимые производители (6%).

Организациями, ответственными за передачу электроэнергии в Китае, являются Государственная электросетевая корпорация и Южнокитайская электросетевая корпорация. Они контролируют 7 региональных и 31 провинциальную сетевые компании.

Распределением электроэнергии занимаются более 3000 районных распределительных сетевых компаний, также в основном подчиняющихся электросетевым корпорациям.

Реформа электроэнергетики Китая ставила целью построение такой системы рынков электроэнергии, которая позволит создать стимулы к конкуренции, повысить эффективность, оптимизировать расходы, усовершенствовать механизмы ценообразования, оптимально распределить ресурсы, способствовать развитию отрасли и строительству сетевой инфраструктуры по всей стране.

Первым шагом стало создание в 1997 г. Государственной энергетической корпорации, что позволило отделить коммерческую деятельность от административного регулирования. Дальнейшие этапы реформы были сформулированы в 10-м пятилетнем плане КНР (2001 - 2005 гг.):
· разделение генерации и сетевой деятельности;
· функциональное разделение нецелевых видов деятельности внутри корпорации (планирование, моделирование, строительство и др.);
· обеспечение прямого доступа на рынок для крупных потребителей;
· формирование конкурентных региональных рынков электроэнергии;
· создание системы подачи заявок на доступ к сети;
· приведение розничного тарифообразования в соответствие с требованиями рынка.

Часть этапов реформы была реализована к 2002 г., когда была основана Государственная комиссия по регулированию электроэнергетики и произведена реорганизация Государственной энергетической корпорации. В процессе реформы проведено разделение корпорации по видам деятельности - на генерирующие и сетевые компании.

В 2004 г. запущены пилотные проекты рынков электроэнергии на западе и северо-западе Китая.
Рынки электроэнергии в Китае находятся на стадии формирования и становления. Планируется поэтапное развитие конкуренции. В настоящий момент конкурентная борьба ведется исключительно между производителями, в дальнейшем предполагается создание условий для возникновения конкурентных механизмов сначала на оптовом, а затем и на розничном рынке.

Общая концепция предусматривает создание трехуровневой структуры - национального рынка, региональных рынков и рынков электроэнергии на уровне провинций. Модель национального рынка предполагает двусторонние сделки по межрегиональной торговле электроэнергией, при этом крупные производители получат возможность подавать заявки напрямую на национальный рынок, минуя уровень регионального.

Основная цель национального рынка - обеспечить снабжение энергодефицитных регионов за счет регионов с избытком генерации.

Пилотные проекты региональных рынков реализовывались на основе двух различных моделей. Северо-Западный Китай имеет единый оптовый рынок региона, в то время как рынок Западного Китая обладает иерархической структурой, в которой рынки на уровне провинций сосуществуют с общерегиональным.

Однако в результате резкого ценового скачка, произошедшего в 2006 г., функционирование этих моделей было приостановлено. Действующая модель предполагает, что генерирующие компании, в дополнение к обслуживанию локальных потребителей, могут подавать заявки на региональный рынок, а компании, снабжающие розничных потребителей, могут докупить там недостающую электроэнергию. Сделки проводятся один раз в месяц, и основным фактором, ограничивающим их, являются перегрузки на линиях электропередачи, соединяющих провинции внутри одного региона.

Рынки на уровне провинций спроектированы на основе модели «единого покупателя». Аукционы проводятся один или два раза в месяц. В большинстве случаев заявки могут подаваться лишь на 30% вырабатываемой электроэнергии, а оставшаяся часть электроэнергии отбирается по принципу обеспечения равного количества часов выработки за год (то есть 30% электроэнергии продается на свободном рынке, а 70% распределяется в равных пропорциях среди потребителей). Для защиты от манипулирования рынком организатор торгов устанавливает потолок ценовых заявок.

США
По сравнению со среднемировой структурой генерации в США относительно большее значение имеют угольные электростанции (на них приходится 48% производимой электроэнергии в стране) и АЭС (20%). Удельный вес гидроэнергетики незначителен и составляет 6% (рис. 7).

Рис. 7. Структура генерации электроэнергии по видам топлива

Источник : U.S. Energy Information Administration. International Energy Statistics. Electricity.
U.S. Department of Energy. Wash.
D
. C .

К основным государственным регулирующим органам в электроэнергетике США относятся Министерство энергетики, FERC (Федеральная комиссия по регулированию энергетики) и комиссии штатов по коммунальному обслуживанию.

Министерство энергетики США разрабатывает общую энергетическую политику, осуществляет надзор в области электроэнергетики и отвечает за поддержание надежности и экономической устойчивости энергосистем и обеспечение экологической безопасности.

В сферу полномочий FERC входит регулирование торговли электроэнергией на межрегиональном уровне (между штатами), а также услуг по передаче электроэнергии. С момента создания в 1977 г. основные усилия FERC направлены на развитие оптовых рынков электроэнергии, повышение надежности и эффективности систем электропередачи.

Регулирование электроэнергетики на уровне отдельных штатов осуществляется комиссиями по коммунальному обслуживанию (в различных штатах они могут иметь разные названия и полномочия). В сферу компетенции региональных властей входят, как правило, регулирование розничной торговли и распределения электроэнергии, вопросы организации и деятельности коммунальных энергокомпаний.

Важную роль в отрасли играет Североамериканская корпорация по надежности (North American Electric Relibility Corporation, NERC) - саморегулируемая некоммерческая организация, в которую входят представители энергокомпаний, государственных органов, потребителей. К основным функциям NERC относится выработка и согласование стандартов надежности энергосистем, мониторинг и анализ проблем, связанных с надежностью.

Если прежде такие стандарты носили, как правило, рекомендательный характер и не подкреплялись действенными санкциями, в настоящее время они являются обязательными для субъектов отрасли.

В 1930 - 1980-х годах электроэнергетика США представляла собой регулируемую монополию. При этом в собственности вертикально-интегрированных коммунальных предприятий находились как генерирующие, так и сетевые активы, а производство, передача и распределение электроэнергии были объединены в единую услугу - поставку потребителям электроэнергии по тарифам.

Масштабное строительство капиталоемких объектов, таких как атомные электростанции, на фоне экономического спада в экономике США и сокращения электропотребления в 70-х годах ХХ в. привело к росту тарифов на электроэнергию, что вызвало обеспокоенность и протесты потребителей.

В целях повышения энергосбережения и энергоэффективности, а также для обеспечения энергетической безопасности в 1978 г. Конгресс США принял Закон о политике регулирования общественных коммунальных предприятий (PURPA). Этот закон положил начало процессу реформирования электроэнергетики США и переходу от регулируемой монополии к конкуренции.

Закон предусматривал появление новой категории производителей электроэнергии - «квалифицированных электростанций», к которым относились электростанции с установленной мощностью менее 50 МВт, использующие технологии когенерации и возобновляемые источники энергии (ВИЭ). Коммунальные предприятия были обязаны закупать электроэнергию у «квалифицированных электростанций» по цене, равной собственным издержкам на производство электроэнергии.

Динамичный рост количества «квалифицированных электростанций» в последующие годы и опыт их успешной работы привели к тому, что традиционные вертикально интегрированные коммунальные предприятия перестали быть единственным источником поставок электроэнергии. Изменения в технологиях производства (появление газотурбинных агрегатов с комбинированным циклом) и передачи электроэнергии существенно способствовали развитию конкуренции в электроэнергетике США.

В 1992 г. Конгресс принял Закон об энергетической политике (EPACT), направленный на развитие конкурентного ценообразования и снижение барьеров для входа на рынок. Важнейшими средствами достижения стратегической цели - развития конкуренции - стали разделение видов деятельности на естественно-монопольные (передача электроэнергии и оперативно-диспетчерское управление) и потенциально конкурентные (генерация, сбыт электроэнергии, ремонт и сервис), а также обеспечение недискриминационного доступа к услугам по передаче электроэнергии.

Закон об энергетической политике 1992 г. обязал коммунальные предприятия предоставлять услуги по передаче электроэнергии третьим лицам по ценам, равным затратам. Кроме того, этот закон открыл возможности для появления новой категории поставщиков электроэнергии, освобожденных от правил регулирования цен на электроэнергию на основе затрат, обязательных для всех коммунальных предприятий (таким образом, сейчас есть две модели регулирования цен - на основе затрат плюс некоторый бонус, и вторая (появившаяся) - на основе верхнего потолка цен).

Следующим этапом стал вступивший в силу с начала 2000 г. приказ FERC № 2000, который предусматривал выделение передачи электроэнергии в самостоятельную структуру, управляющую магистральными сетями региона, - Региональную передающую компанию (Regional Transmission Organization, RTO).

В результате трансформации подходов государства к отрасли обозначились современные контуры реформы. Она заключается, прежде всего, в развитии конкурентных отношений в электроэнергетике, в связи с чем решаются задачи разделения видов деятельности, создания межрегиональных конкурентных рынков, формирования единого оперативно-диспетчерского управления и управления сетями передачи электроэнергии в пределах регионов и на межрегиональном уровне.

Конкуренция привела к вытеснению ценообразования на основе издержек рыночным формированием цены на основе спроса и предложения. Это способствовало развитию в США оптовых рынков электроэнергии, которые существенно различаются по географии (они могут охватывать один штат или несколько соседних штатов), структуре, принятым стандартам и механизмам торговли, составу участников и другим показателям. На сегодня уже 70% населения США проживает на территории, где действуют конкурентные оптовые рынки электроэнергии.

(Продолжение следует.)

Кондратьев Владимир Борисович - доктор экономических наук, профессор, руководитель Центра промышленных и инвестиционных исследований Института мировой экономики и международных отношений РАН.

Введение
1. Историко-географические особенности развития электроэнергетики в России
2. Территориальное размещение производств электроэнергетики в Российской Федерации
3. Единая энергетическая система страны
4. Проблемы и перспективы развития электроэнергетики
Заключение
Список использованных источников

Введение

Электроэнергетика - отрасль энергетики, включающая в себя производство, передачу и сбыт электроэнергии. Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света.

Электроэнергетика наряду с другими отраслями народного хозяйства рассматривается как часть единой народно – хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Представить без электроэнергии нашу жизнь невозможно.

Основным потребителем электроэнергии остается промышленность, хотя ее удельный вес в общем полезном потреблении электроэнергии значительно снижается. Электрическая энергия в промышленности применяется для приведения в действие различных механизмов и непосредственно в технологических процессах.

Например, в сельском хозяйстве электроэнергия применяется для обогрева теплиц и помещений для скота, освещения, автоматизации ручного труда на фермах.

Огромную роль электроэнергия играет в транспортном комплексе. Большое количество электроэнергии потребляет электрифицированный железнодорожный транспорт, что позволяет повышать пропускную способность дорог за счет увеличения скорости движения поездов, снижать себестоимость перевозок, повышать экономию топлива.

Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей. Многие бытовые приборы (холодильники, телевизоры, стиральные машины, утюги и другие) были созданы благодаря развитию электротехнической промышленности.

Поэтому, актуальность выбранной мною темы является очевидной, также как очевидна важность электроэнергетики в хозяйственной жизни нашей страны.

Итак, задачами и целью данной работы являются:

– рассмотреть структуру электроэнергетики;
– изучить её размещение;
– рассмотреть современный уровень развития электроэнергетики;
– охарактеризовать особенности развития и размещения электроэнергетики в России.

1. Историко-географические особенности развития электроэнергетики в России.

Развитие электроэнергетики России связано с планом ГОЭЛРО (1920 г.) сроком на 15 лет, который предусматривал строительство 10 ГЭС общей мощностью 640 тыс. кВт. План был выполнен с опережением: к концу 1935 г. было построено 40 районных электростанций. Таким образом, план ГОЭЛРО создал базу индустриализации России, и она вышла на второе место по производству электроэнергии в мире.

В начале XX века в структуре потребления энергоресурсов абсолютно преобладающее место занимал уголь. Например, в развитых странах к 1950г. на долю угля приходилось 74%, а нефти – 17% в общем объеме энергопотребления. При этом основная доля энергоресурсов использовалась внутри стран, где они добывались.

Среднегодовые темпы роста энергопотребления в мире в первой половине XX в. составляли 2-3%, а в 1950-1975гг. – уже 5%.

Чтобы покрыть прирост энергопотребления во второй половине XX в. мировая структура потребления энергоресурсов претерпевает большие изменения. В 50-60-х гг. на смену углю все больше приходят нефть и газ. В период с 1952 по 1972гг. нефть была дешевой. Цена на нее на мировом рынке доходила до 14 долл./т. Во второй половине 70-х также начинается освоение крупных месторождений природного газа и его потребление постепенно наращивается, вытесняя уголь.

До начала 70-х годов рост потребления энергоресурсов был в основном экстенсивным. В развитых странах его темп фактически определялся темпом роста промышленного производства. Между тем, освоенные месторождения начинают истощаться, и начинает расти импорт энергоресурсов, в первую очередь – нефти.

В 1973г. разразился энергетический кризис. Мировая цена на нефть подскочила до 250-300 долл./т. Одной из причин кризиса стало сокращение ее добычи в легкодоступных местах и перемещение в районы с экстремальными природными условиями и на континентальный шельф. Другой причиной стало стремление основных стран – экспортеров нефти (членов ОПЕК), которыми в основном являются развивающиеся страны, более эффективно использовать свои преимущества владельцев основной части мировых запасов этого ценного сырья.

В этот период ведущие страны мира были вынуждены пересмотреть свои концепции развития энергетики. В результате, прогнозы роста энергопотребления стали более умеренными. Значительное место в программах развития энергетики стало отводиться энергосбережению. Если до энергетического кризиса 70-х энергопотребление в мире прогнозировалось к 2000 г. на уровне 20-25 млрд. т условного топлива, то после него прогнозы были скорректированы в сторону заметного уменьшения до 12,4 млрд. т условного топлива.

Промышленно развитые страны принимают серьезнейшие меры по обеспечению экономии потребления первичных энергоресурсов. Энергосбережение все больше занимает одно из центральных мест в их национальных экономических концепциях. Происходит перестройка отраслевой структуры национальных экономик. Преимущество отдается мало энергоемким отраслям и технологиям. Происходит свертывание энергоемких производств. Активно развиваются энергосберегающие технологии, в первую очередь, в энергоемких отраслях: металлургии, металлообрабатывающей промышленности, транспорте. Реализуются масштабные научно-технические программы по поиску и разработке альтернативных энергетических технологий. В период с начала 70х до конца 80х гг. энергоемкость ВВП в США снизилась на 40%, в Японии – на 30%.

В этот же период идет бурное развитие атомной энергетики. В 70-е годы и за первую половину 80-х годов в мире было пущено в эксплуатацию около 65% ныне действующих АЭС.

В этот период в политический и экономический обиход вводится понятие энергетической безопасности государства. Энергетические стратегии развитых стран нацеливаются не только на сокращение потребления конкретных энергоносителей (угля или нефти), но и в целом на сокращение потребления любых энергоресурсов и диверсификацию их источников.

В результате всех этих мер в развитых странах заметно снизился среднегодовой темп прироста потребления первичных энергоресурсов: с 1,8% в 80-е гг. до 1,45% в 1991-2000 гг. По прогнозу до 2015 г. он не превысит 1,25%.

Во второй половине 80-х появился еще один фактор, оказывающий сегодня все большее влияние на структуру и тенденции развития ТЭК. Ученые и политики всего мира активно заговорили о последствиях воздействия на природу техногенной деятельности человека, в частности, влиянии на окружающую среду объектов ТЭК. Ужесточение международных требований по охране окружающей среды с целью снижения парникового эффекта и выбросов в атмосферу (по решению конференции в Киото в 1997г.) должно привести к снижению потребления угля и нефти как наиболее влияющих на экологию энергоресурсов, а также стимулировать совершенствование существующих и создание новых энергетических технологий.

2. Территориальное размещение производств электроэнергетики в Российской Федерации.

Электроэнергетика сильнее, чем все другие отрасли промышленности, способствует развитию и территориальной оптимизации размещения производительных сил. Это выражается в следующем (по А.Т.Хрущёву):

1) вовлекаются в использование топливно-энергетические ресурсы, удаленные от потребителей;

2) возможен промежуточный отбор электроэнергии для снабжения ею районов, через которые проходят линии высоковольтных электропередач, что способствует росту уровня территориальной освоенности этих районов, повышению эффективности экономики и уровня комфортности проживания в них;

3) возникают дополнительные возможности для создания электроёмких и теплоёмких производств (в которых доля топливно-энергетических затрат в себестоимости готовой продукции очень велика); 4) электроэнергетика имеет большое районообразующее значение, именно она во многом определяет производственную специализацию районов.

Опыт развития отечественной электроэнергетики выработал следующие принципы размещения и функционирования предприятий этой отрасли промышленности:

1) концентрация производства электроэнергии на крупных районных электростанциях, использующих относительно дешёвое топливо и энергоресурсы;

2) комбинирование производства электроэнергии и тепла для теплофикации населенных пунктов, прежде всего городов;

3) широкое освоение гидроресурсов с учетом комплексного решения задач электроэнергетики, транспорта, водоснабжения, ирригации, рыбоводства;

4) необходимость развития атомной энергетики, особенно в районах с напряженным топливно-энергетическим балансом, при условии подчеркнутого и исключительного внимания к соблюдению правил эксплуатации АЭС, обеспечение безопасности и надежности их функционирования;

5) создание энергосистем, формирующих единую высоковольтную сеть страны.

Размещение предприятий электроэнергетики зависят от ряда факторов, основные из них – топливно-энергетические ресурсы и потребители. По степени обеспеченности топливно-энергетическими ресурсами районы России можно разделить на три группы: 1) наиболее высокая – Дальневосточный, Восточно-Сибирский, Западно-Сибирский; 2) относительно высокая – Северный, Северо-Кавказский; 3) низкая – Северо-Западный, Центральный, Центрально-Черноземный, Поволжский, Уральский.

Расположение топливно-энергетических ресурсов не совпадает с размещением населения, производством и потребителем электроэнергии. Подавляющая часть произведенной электроэнергии расходуется в европейской части России. По производству электроэнергии среди экономических районов к концу 1990-х гг. выделялись Центральный, а по потреблению – Уральский. В числе электродефицитных районов: Уральский, Северный, Центрально-Черноземный, Волго-Вятский.

Крупные электростанции играют значительную районообразующую роль. На их базе возникают энергоёмкие и теплоёмкие производства.

Электроэнергетика включает тепловые электростанции, атомные электростанции, гидроэлектростанции (включая гидроаккумулирующие и приливные), прочие электростанции (ветростанции, гелиостанции, геотермальные), электрические сети, тепловые сети, самостоятельные котельные.

Тепловые электростанции (ТЭС). Основной тип электростанций в России – тепловые, работающие на органическом топливе (уголь, газ, мазут, сланцы, торф). Основную роль играют мощные (более 2 млн кВт) государственные районные электростанции (ГРЭС), обеспечивающие потребности экономического района и работающие в энергосистемах. На размещение тепловых электростанций оказывают основное влияние топливный и потребительский факторы.

При выборе места для строительства ТЭС учитывают сравнительную эффективность транспортировки топлива и электроэнергии. Если затраты на перевозку топлива превышают издержки на передачу электроэнергии целесообразно размещать непосредственно у источников топлива, при более высокой эффективности транспортировки топлива электростанции размещают вблизи потребителей электроэнергии. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива (чем крупнее электростанция, тем дальше она может передавать энергию).

ГРЭС мощностью более 2 млн кВт расположены в следующих экономических районах: Центральном (Костромская, Рязанская, Конаковская); Уральская (Рефтинская, Троицкая, Ириклинская); Поволжском (Заинская); Восточно-Сибирском (Назаровская); Западно-Сибирском (Сургутские); Северо-Западном (Киришская).

К тепловым электростанциям относятся и теплоэлектроцентрали (ТЭЦ), обеспечивающие теплом предприятия и жилье, с одновременным производством электроэнергии. ТЭЦ размещаются в пунктах потребления пара и горячей воды, поскольку радиус передачи тепла невелик (10-12 км).

Положительные свойства ТЭС:

– относительно свободное размещение, связанное с широким распространением топливных ресурсов в России;
– способность вырабатывать электроэнергию без сезонных колебаний в отличие от ГЭС).

Отрицательные свойства ТЭС:

– используют невозобновимые топливные ресурсы;
– обладают низким коэффициентом полезного действия (КПД);
– оказывают неблагоприятное воздействие на окружающую среду;
– имеют большие затраты на добычу, перевозку, переработку и удаление отходов топлива.

Гидравлические электростанции (ГЭС). Они занимают второе место по количеству вырабатываемой электроэнергии. Гидроэлектростанции являются эффективным источником энергии, поскольку они используют возобновимые ресурсы, они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС), имеют высокий КПД (более 80%), производят самую дешевую энергию.

Определяющее влияние на размещение гидроэлектростанций оказывают размеры запасов гидроресурсов, природные (рельеф местности, характер реки, ее режим и др.) и хозяйственные (размер ущерба от затопления территории, связанного с созданием плотины и водохранилища ГЭС, ущерба рыбному хозяйству и др.), условия их использования.

Запасы гидроресурсов и эффективность использования водной энергии в районах России различны. Большая часть гидроэнергоресурсов страны (более 2/3 запасов) сосредоточена в Восточной Сибири и на Дальнем Востоке. В этих же районах исключительно благоприятны природные условия для строительства и функционирования ГЭС – многоводность, естественная зарегулированность рек (например, реки Ангары озером Байкал), позволяющие вырабатывать электроэнергию на мощных ГЭС равномерно, без сезонных колебаний; наличие скальных оснований для возведения высоких платин и др.

Эти и другие особенности обуславливают здесь более высокую экономическую эффективность строительства ГЭС (удельные капиталовложения в 2-3 раза ниже, а стоимость электроэнергии в 4-5 раз дешевле), чем в районах европейской части страны. Поэтому самые крупные в стране ГЭС построены на реках Восточной Сибири (Ангара, Енисей). На Ангаре, Енисее и других реках России строительство ГЭС ведется, как правило, каскадами, которые представляют собой группу электростанций, расположенных ступенями по течению водного потока, для последовательности использования его энергии. Крупнейший в мире Ангаро-Енисейский гидроэнергетический каскад имеет общую мощность около 22 млн кВт. В его состав входят гидроэлектростанции: Саяно-Шушенская, Красноярская, Иркутская, Братская, Усть-Илимская.

Каскад из мощных электростанций создан также в европейской части страны на Волге и Каме (Волжско-Камский каскад): Волжская (вблизи Самары), Волжская (вблизи Волгограда), Саратовская, Чебоксарская, Воткинская и др.

Менее мощные ГЭС созданы на Дальнем Востоке, в Западной Сибири, на Северном Кавказе и в других районах России. В европейской части страны, испытывающей острый дефицит в электроэнергии, весьма перспективно строительство особого вида гидроэлектростанций – гидроаккумулирующих (ГАЭС). Одна из таких электростанций уже построена – Загорская ГАЭС (1,2 млн. кВт) в Московской области.

Положительные свойства ГЭС : более высокая маневренность и надежность работы оборудования; высокая производительность труда; возобновляемость источника энергии; отсутствие затрат на добычу, перевозку и удаление отходов топлива; низкая себестоимость.

Отрицательные свойства ГЭС : возможность затопления населенных пунктов, сельхозугодий и коммуникаций; отрицательное воздействие на фору, фауну; дороговизна строительства.

Атомные электростанции (АЭС) производят электроэнергию более дешевую, чем ТЭС, работающих на угле или мазуте. Их доля в суммарной выработке электроэнергии в России не превышает 11% (в Литве – 76%, Франции – 76%, Бельгии – 65%, Швеции – 51%, Словакии – 49%, ФРГ – 34%, Японии – 30%, США – 20%).

Главным фактором размещения атомных электростанций, использующих в своей работе высокотранспортабельное, ничтожное по весу топливо (для полной годовой загрузки АЭС требуется всего несколько килограммов урана), – потребительский. Крупнейшие АЭС в нашей стране в основном расположены в районах с напряженным топливно-энергетическим балансом. В России действуют 10 АЭС, на которых функционирует 30 энергоблоков. На АЭС эксплуатируется реакторы трех основных типов: водо-водяные (ВВЭР), большой мощности канальные урано-графитовые (РБМК) и на быстрых нейтронах (БН). Атомные электростанции в России объедены в концерн «Росэнергоатом».

Положительные свойства АЭС : их можно строить в любом районе, независимо от его энергетических ресурсов; атомное топливо отличается большим содержанием энергии; АЭС не делают выбросов в атмосферу в условиях безаварийной работы; не поглощают кислород.

Отрицательные свойства АЭС : сложились захоронения радиоактивных отходов (для их вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения); тепловое загрязнение используемых АЭС водоемов.

В отечественной электроэнергетике используются альтернативные источники энергии: солнца, ветра, внутреннего тепла земли, морских приливов. Построены природные электростанции (ПЭС). На приливных волнах на Кольском полуострове сооружена Кислогубская ПЭС (400 кВт), который более 30 лет; На терминальных водах Камчатки поострена Паужетская ГеоТЭС. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера, гелиоустановки на Северном Кавказе.

3. Единая энергетическая система страны

Энергосистема – это группы электростанций разных типов, объединенные высоковольтными линиями электропередачи (ЛЭП) и управляемые из одного центра. Энергосистемы в электроэнергетике России объединяют производство, передачу и распределение электроэнергии между потребителями. В энергосистеме для каждой электростанции есть возможность выбрать наиболее экономичный режим работы. Причем если в составе энергосистемы высока доля ГЭС, то ее маневренные возможности повышаются, а себестоимость электроэнергии относительно ниже; наоборот, в системе, объединяющей только ТЭС, они наиболее ограничены, а себестоимость электроэнергии выше.

Для более экономного использования потенциала электростанций России создана Единая энергетическая система (ЕЭС), в которой входят более 700 крупных электростанций, на которых сосредоточено 84% мощности всех электростанций страны. Создание ЕЭС имеет экономические преимущества. Объединенные энергетические системы (ОЭС) Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа, Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара – Москва (500 кВ), Самара – Челябинск, Волгоград – Москва (500 кВ), Волгоград – Донбасс (800 кВ), Москва – Санкт-Петербург (750 кВ).

Основная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

Единая энергетическая система России входит в состав крупного энергетического объединения – Единой энергосистемы (ЕЭС) бывшего СССР, включающего также энергосистемы независимых государств: Азербайджана, Армении, Беларуси, Грузии, Казахстана, Латвии, Литвы, Молдовы, Украины и Эстонии. С ЕЭС продолжают синхронно работать энергосистемы семи стран восточной Европы – Болгарии, Венгрии, Восточной части Германии, Польши, Румынии, Чехии и Словакии.

Электростанциями, входящими в ЕЭС, вырабатывается более 90% электроэнергии, производимой в независимых государствах – бывших республиках СССР. Объединение энергосистем в ЕЭС позволяет: обеспечить снижение необходимой суммарной установленной мощности электростанций за счет совмещения максимумов нагрузки энергосистем, которые имеют разницу поясного времени и отличия в графиках нагрузки; сократить требуемую резервную мощность на электростанциях; осуществить наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры; удешевить энергетическое строительство; улучшить экологическую ситуацию.

Для совместной работы электроэнергетических объектов, функционирующих в составе Единой энергосистемы, создан координационный орган Электроэнергетический Совет стран СНГ.

Система российской электроэнергетики характеризуется довольно сильной региональной раздробленностью вследствие современного состояния линий высоковольтных передач. В настоящее время энергосистема Дальнего района не соединена с остальной частью России и функционирует независимо. Соединение энергосистем Сибири и Европейской части России также очень ограничено. Энергосистемы пяти европейских регионов России (Северо-Западного, Центрального, Поволжского, Уральского и Северо-Кавказского) соединены между собой, но пропускная мощность здесь в среднем намного меньше, чем внутри самих регионов. Энергосистемы этих пяти регионов, а также Сибири и Дальнего Востока рассматриваются в России как отдельные региональные объединенные энергосистемы. Они связывают 68 из 77 существующих региональных энергосистем внутри страны. Остальные девять энергосистем полностью изолированы.

Преимущества системы ЕЭС, унаследовавшей инфраструктуру от ЕЭС СССР, заключаются в выравнивании суточных графиков потребления электроэнергии, в том числе за счет ее последовательных перетоков между часовыми поясами, улучшении экономических показателей электростанций, создании условий для полной электрификации территорий и всего народного хозяйства.

В конце 1992 г. было зарегистрировано Российское акционерное общество энергетики и электрификации (РАО ЕЭС), созданное для управления ЕЭС и организации надежного энергосбережения народного хозяйства и населения. В РАО ЕЭС входят более 700 территориальных АО, оно объединяет около 600 ТЭС, 9 АЭС и более 100 ГЭС. РАО ЕЭС работает параллельно с энергосистемами стран СНГ и Балтии, а также с энергосистемами некоторых стран Восточной Европы. За пределами РАО ЕЭС пока остаются крупные энергосистемы Восточной Сибири.

Контрольный пакет РАО ЕЭС закреплен в государственной собственности. Как естественный монополист компания находится в системе государственного регулирования тарифов на электричество. В отдельных регионах, например на Дальнем Востоке, федеральное правительство субсидирует энерготарифы.

В 1996 году Правительство РФ создало федеральный (общероссийский) оптовый рынок электрической энергии и мощности (ФОРЭМ) для покупки о продажи электроэнергии через сети высоковольтных передач. Практически вся электроэнергия, передаваемая по сетям высоковольтных передач, технически рассматривается как результат сделки на ФОРЭМе. Управляется этот рынок РАО ЕЭС. На ФОРЭМе покупатели и продавцы не заключают контракты друг с другом. Они покупают и продают электроэнергию по фиксированным ценам, а РАО ЕЭС обеспечивает соответствие спроса и предложения. Продавцами электроэнергии, не связанными с РАО ЕЭС, являются атомные электростанции.

4. Проблемы и перспективы развития электроэнергетики.

Основные проблемы развития электроэнергетики России связаны: с технической отсталостью и износом фондов отрасли, несовершенством хозяйственного механизма управления энергетическим хозяйством, включая ценовую и инвестиционную политику, ростом неплатежей энергопотребителей. В условиях кризиса экономики сохраняется высокая энергоемкость производства.

В настоящее время более 18% электростанций полностью выработали свой расчетный ресурс установленной мощности. Очень медленно идет процесс энергосбережения. Правительство пытается решить проблему разных сторон: одновременно идет акционирование отрасли (51% акций остается у государства), привлекаются иностранные инвестиции и начала внедряться программа по снижению энергоемкости производства.

В качестве основных задач развития российской энергетики можно выделить следующее:

1) снижение энергоемкости производства;

2) сохранение единой энергосистемы России;

3) повышение коэффициента используемой мощности энергосистемы;

4) полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены, возможный отказ от клиринга;

5) скорейшее обновление парка энергосистемы;

6) приведение экологических параметров энергосистемы к уровню мировых стандартов.

Сейчас перед отраслью стоит ряд проблем. Важной является экологическая проблема. На данном этапе, в России выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз.

Выбросы загрязняющих веществ в атмосферу энергокомпаниями РАО «ЕЭС России» в 2005-2007 г.г. (SO 2 , NO 2 , твердых частиц), тыс. тонн.

Снижение выбросов в атмосферу в 2007 г. по сравнению с 2006 г. объясняется уменьшением доли сжигания топлива (мазута и угля) с высоким содержанием серы и золы.

За 2007 год энергокомпании РАО ЕЭС России добились следующих производственно-экологических показателей:

Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что экологический фактор долгое время учитывался крайне мало или вовсе не учитывался. Наиболее не экологична угольная ТЭС, вблизи них радиоактивный уровень в несколько раз превышает уровень радиации в непосредственной близости от АЭС. Использование газа в ТЭС гораздо эффективнее, чем мазута или угля; при сжигании 1 тонны условного топлива образуется 1,7 тонны углерода против 2,7 тонны при сжигании мазута или угля. Экологические параметры, установленные ранее не обеспечивают полной экологической чистоты, в соответствии с ними строилось большинство электростанций.

Новые стандарты экологической чистоты вынесены в специальную государственную программу “Экологически чистая энергетика”. С учетом требований этой программы уже подготовлено несколько проектов и десятки находятся в стадии разработки. Так, существует проект Березовской ГРЭС-2 с блоками на 800 мВт и рукавными фильтрами улавливания пыли, проект ТЭС с парогазовыми установками мощностью по 300 мВт, проект Ростовской ГРЭС, включающий в себя множество принципиально новых технических решений. Отдельно рассмотрим проблемы развития атомной энергетики.

Атомная промышленность и энергетика рассматриваются в Энергетической стратегии (2005-2020гг.) как важнейшая часть энергетики страны, поскольку атомная энергетика потенциально обладает необходимыми качествами для постепенного замещения значительной части традиционной энергетики на ископаемом органическом топливе, а также имеет развитую производственно-строительную базу и достаточные мощности по производству ядерного топлива. При этом основное внимание уделяется обеспечению ядерной безопасности и, прежде всего безопасности АЭС в ходе их эксплуатации. Кроме того, требуется принятие мер по заинтересованности в развитии отрасли общественности, особенно населения, проживающего вблизи АЭС.

Для обеспечения запланированных темпов развития атомной энергетики после 2020 г., сохранения и развития экспортного потенциала уже в настоящее время требуется усиление геологоразведочных работ, направленных на подготовку резервной сырьевой базы природного урана.

Максимальный вариант роста производства электроэнергии на АЭС соответствует как требованиям благоприятного развития экономики, так и прогнозируемой экономически оптимальной структуре производства электроэнергии с учетом географии ее потребления. При этом экономически приоритетной зоной размещения АЭС являются европейские и дальневосточные регионы страны, а также северные районы с дальнепривозным топливом. Меньшие уровни производства энергии на АЭС могут возникнуть при возражениях общественности против указанных масштабов развития АЭС, что потребует соответствующего увеличения добычи угля и мощности угольных электростанций, в том числе в регионах, где АЭС имеют экономический приоритет.

Основные задачи по максимальному варианту: строительство новых АЭС с доведением установленной мощности атомных станций до 32 ГВт в 2010 г. и до 52,6 ГВт в 2020 г.; продление назначенного срока службы действующих энергоблоков до 40-50 лет их эксплуатации с целью максимального высвобождения газа и нефти; экономия средств за счет использования конструктивных и эксплуатационных резервов.

В этом варианте, в частности, намечена достройка в 2000-2010 годы 5 ГВт атомных энергоблоков (двух блоков – на Ростовской АЭС и по одному – на Калининской, Курской и Балаковской станциях) и новое строительство 5,8 ГВт атомных энергоблоков (по одному блоку на Нововоронежской, Белоярской, Калининской, Балаковской, Башкирской и Курской АЭС). В 2011 – 2020 гг. предусмотрено строительство четырех блоков на Ленинградской АЭС, четырех блоков на Северо-Кавказской АЭС, трех блоков Башкирской АЭС, по два блока на Южно-Уральской, Дальневосточной, Приморской, Курской АЭС –2 и Смоленской АЭС – 2, на Архангельской и Хабаровской АТЭЦ и по одному блоку на Нововоронежской, Смоленской и Кольской АЭС – 2.

Одновременно в 2010 – 2020 гг. намечено вывести из эксплуатации 12 энергоблоков первого поколения на Билибинской, Кольской, Курской, Ленинградской и Нововоронежской АЭС.

Основные задачи по минимальному варианту – строительство новых блоков с доведением мощности АЭС до 32 ГВт в 2010 г. и до 35 ГВт в 2020 г. и продление назначенного срока службы действующих энергоблоков на 10 лет.

Основой электроэнергетики России на всю рассматриваемую перспективу останутся тепловые электростанции, удельный вес которых в структуре установленной мощности отрасли составит к 2010 г. 68%, а к 2020 г. – 67-70% (2000 г. – 69%). Они обеспечат выработку, соответственно, 69% и 67-71% всей электроэнергии в стране (2000 г. – 67%).

Учитывая сложную ситуацию в топливодобывающих отраслях и ожидаемый высокий рост выработки электроэнергии на тепловых электростанциях (почти на 40-80 % к 2020 г.), обеспечение электростанций топливом становится в предстоящий период одной из сложнейших проблем в энергетике.

Суммарная потребность для электростанций России в органическом топливе возрастет с 273 млн т у.т. в 2000 г. до 310-350 млн т у.т. в 2010 г. и до 320-400 млн т у.т. в 2020 г. Относительно не высокий прирост потребности в топливе к 2020 г. по сравнению с выработкой электроэнергии связан с практически полной заменой к этому периоду существующего неэкономичного оборудования на новое высокоэффективное, что требует осуществления практически предельных по возможностям вводов генерирующей мощности. В высоком варианте в период 2011-2015 гг. на замену старого оборудования и для обеспечения прироста потребности предлагается вводить 15 млн кВт в год и в период 2016-2020 гг. до 20 млн кВт в год. Любое отставание по вводам приведет к снижению эффективности использования топлива и соответственно к росту его расхода на электростанциях, по сравнению с определенными в Стратегии уровнями.

Необходимость радикального изменения условий топливного обеспечения тепловых электростанций в европейских районах страны и ужесточения экологических требований обусловливает существенные изменения структуры мощности ТЭС по типам электростанций и видам используемого топлива в этих районах. Основным направлением должно стать техническое перевооружение и реконструкция существующих, а также сооружение новых тепловых электростанций. При этом приоритет будет отдан парогазовым и экологически чистым угольным электростанциям, конкурентоспособным в большей части территории России и обеспечивающим повышение эффективности производства энергии. Переход от паротурбинных к парогазовым ТЭС на газе, а позже – и на угле обеспечит постепенное повышение КПД установок до 55 %, а в перспективе до 60 % что позволит существенно снизить прирост потребности ТЭС в топливе.

Для развития Единой энергосистемы России Энергетической стратегией предусматривается:

1) создание сильной электрической связи между восточной и европейской частями ЕЭС России, путем сооружения линий электропередачи напряжением 500 и 1150 кВ. Роль этих связей особенно велика в условиях необходимости переориентации европейских районов на использование угля, позволяя заметно сократить завоз восточных углей для ТЭС;

2) усиление межсистемных связей транзита между ОЭС (объединенной энергетической системой) Средней Волги – ОЭС Центра – ОЭС Северного Кавказа, позволяющего повысить надежность энергоснабжения региона Северного Кавказа, а также ОЭС Урала – ОЭС Средней Волги – ОЭС Центра и ОЭС Урала – ОЭС Северо-Запада для выдачи избыточной мощности ГРЭС Тюмени;

3) усиление системообразующих связей между ОЭС Северо-Запада и Центра;

4) развитие электрической связи между ОЭС Сибири и ОЭС Востока, позволяющей обеспечить параллельную работу всех энергообъединений страны и гарантировать надежное энергоснабжение дефицитных районов Дальнего Востока.

Альтернативная энергетика. Несмотря на то, что Россия по степени использования так называемых нетрадиционных и возобновляемых видов энергии находятся пока в шестом десятке стран мира, развитие этого направления имеет большое значение, особенно учитывая размеры территории страны. Ресурсный потенциал нетрадиционных и возобновляемых источников энергии составляет порядка 5 млрд. т условного топлива в год, а экономический потенциал в самом общем виде достигает не менее 270 млн. т условного топлива.

Пока все попытки использования нетрадиционных и возобновляемых источников энергии в России носят экспериментальный и полуэкспериментальный характер или в лучшем случае такие источники играют роль местных, строго локальных производителей энергии. Последнее относится и к использованию энергии ветра. Это происходит потому, что Россия еще не испытывает дефицита традиционных источников энергии и ее запасы органического топлива и ядерного горючего пока достаточно велики. Однако и сегодня в удаленных или труднодоступных районах России, где нет необходимости строить большую электростанцию, да и обслуживание ее зачастую некому, «нетрадиционные» источники электроэнергии – наилучшее решение проблемы.

Намечаемые уровни развития и технического перевооружения отраслей энергетического сектора страны невозможны без соответствующего роста производства в отраслях энергетического (атомного, электротехнического, нефтегазового, нефтехимического, горношахтного и др.) машиностроения, металлургии и химической промышленности России, а также строительного комплекса. Их необходимое развитие – задача всей экономической политики государства.

Заключение

Сегодня мощность всех электростанций России составляет око­ло 212,8 млн. кВт. В последние годы произошли огромные органи­зационные изменения в энергетике. Создана акционерная компа­ния РАО «ЕЭС России», управляемая советом директоров и осуще­ствляющая производство, распределение и экспорт электроэнергии. Это крупнейшее в мире централизованно управляемое энергетиче­ское объединение. Фактически в России сохранилась монополия на производство электроэнергии.

При развитии энергетики огромное значение придается вопро­сам правильного размещения электроэнергетического хозяйства. Важнейшим условием рационального размещения электрических станций является всесторонний учет потребности в электроэнергии всех отраслей народного хозяйства страны и нужд населения, а также каждого экономического района на перспективу.

В перспективе Россия должна отказаться от строительства но­вых крупных тепловых и гидравлических станций, требующих ог­ромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Даль­нем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС. Новые мощные кон­денсационные ГРЭС будут строиться на углях Канско-Ачинского бассейна.\

Список использованных источников

1. Архангельский В. Электроэнергетика – комплекс общегосударственного значения. – БИКИ, №140, 2003

2. Винокуров А.А. Введение в экономическую географию и региональную экономику России. Часть 1. – М., ВЛАДОС-ПРЕСС. 2003

3. Гладкий Ю.Н., Доброскок В.А., Семенов С.П. Социально-экономическая география: Учебное пособие. – М., Наука. 2001

4. Дронов В.П. Экономическая и социальная география. – И. Проспект. 1996

5. Козьева И.А., Кузьбожев Э.Н. Экономическая география и регионалистика: Учебное пособие для вузов. – 2-е изд., перераб. и доп. – Курск. КГТУ. 2004

6. Макаров А. Электроэнергетика России: производственные перспективы и хозяйственные отношения. – Общество и экономика, № 7-8, 2003

7. Экономическая география: Учебное пособие. / Под ред. Жлетикова В.П. – Ростов-на-Дону. Феникс. 2003

8. Экономическая и социальная география России: Учебник для вузов. / Под ред. проф. А.Т. Хрущева – 2-е изд., стереотип. – М. Дрофа. 2002

Реферат на тему “История развития электроэнергетики в России” обновлено: 14 ноября, 2017 автором: Научные Статьи.Ру



 

Возможно, будет полезно почитать: