Все системы исчисления. Позиционная система счисления

Как только люди начали считать, у них появилась потребность в записи чисел. Археологи находили на стоянках первобытных людей свидетельства того, что изначально почти любое количество записывалось просто тождественным ему количеством значков: палочек, точек, черточек. Такая система называется единичной (унарной). Любое число в этой системе записывается повторением одного знака, который символизирует единицу.

Не смотря на древность этой системы она используется и по сей день, первоклассников учат считать на палочках, а для определения курса, на котором сейчас обучается курсант военного училища следует посчитать количество полосок, нашитых на его рукаве.

Унарная система - не самый удобный способ записи чисел, запись занимает много места и монотонность записи приводит к ошибкам, поэтому с течением времени начали появляться более удобные системы счисления .

Десятичная древнеегипетская система счисления

У Древних Египтян была весьма удобная система счисления, в ней были знаки обозначающие ключевые числа: 1, 10, 100 и т. д. Остальные числа записывали с помощью сложения. Обозначения некоторых чисел представлено в рисунке 1 .

Сейчас система не используется.

Римская система счисления

Эта система сохранилась без изменений до наших дней. Появилась она более чем две с половиной тысячи лет назад в Древнем Риме. В ее основе лежали знаки I (палец руки) для числа 1, V (пятерня) для числа 5, X (две руки) для числа 10. А для обозначения 100, 500 и 1000 применяли первые буквы латинских названий (centum - сто, demimille - половина тысячи, mille - тысяча). Для того чтобы записать число римляне использовали не только суммы, как египтяне, но и разность. Для этого применялось простое правило: каждый меньший знак стоящий после большего прибавляется к его значению, а стоящий перед большим знаком отнимается от его значения. Таким образом IX - обозначает 9, а XI - 11 .

Римскими цифрами пользуются по сей день, и з используют для наименования разделов, подразделов книг, веков, так же их часто пишут на часах.

Алфавитные системы счисления

К таким системам относятся: греческая, славянская, финская и другие. Здесь числа от 1 до 9, от 10 до 90 и от 100 до 900 обозначались буквами алфавита. В Древней Греции цифры обозначались первыми девятью буквами греческого алфавита. Числа от 10 до 90 - следующими девятью. И от 100 до 900 - последними девятью буквами римского алфавита. У славян числовые значения соответствовали буквам по порядку. Сначала для этого использовалась глаголица, а потом и кириллица. В России такая нумерация сохранилась до конца XVII века. Потом Петр I привез из-за границы арабскую нумерацию, которую мы используем по сей день .

Система счисления - это способ изображения чисел и соответствующие ему правила действия над числами . Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные . Знаки, используемые при записи чисел , называются цифрами.

В непозиционных системах счисления значение цифры не зависит от положения в числе .

Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

Пример 1. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа - большая, то их значения вычитаются.

Пример 2.

VI = 5 + 1 = 6; IV = 5 – 1 = 4.

Пример 3.

MCMXCVIII = 1000 + (–100 + 1000) +

+ (–10 + 100) + 5 + 1 + 1 + 1 = 1998.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции . Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой . Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая - три десятка, третья - три единицы.

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например:

101101 2 , 3671 8 , 3B8F 16 .

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числаq .q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа вq -ичной системе счисления требуетсяq различных знаков (цифр), изображающих числа 0, 1, ...,q – 1. Запись числаq вq -ичной системе счисления имеет вид 10.

Развернутая форма записи числа

Пусть Aq - число в системе с основанием q , аi - цифры данной системы счисления, присутствующие в записи числа A , n + 1 - число разрядов целой части числа, m - число разрядов дробной части числа:

Развернутой формой числа А называется запись в виде:

Например, для десятичного числа:

В следующих примерах приводится развернутая форма шестнадцатеричного и двоичного чисел:

В любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную. Например, перевод в десятичную систему написанных выше чисел производится так:

Перевод десятичных чисел в другие системы счисления

Перевод целых чисел

Целое десятичное число X требуется перевести в систему с основаниемq :X = (a n a n-1 a 1 a 0) q . Нужно найти значащие цифры числа:. Представим число в развернутой форме и выполним тождественное преобразование:

Отсюда видно, что a 0 есть остаток от деления числаX на числоq . Выражение в скобках - целое частное от этого деления. Обозначим его заX 1. Выполняя аналогичные преобразования, получим:

Следовательно, a 1 есть остаток от деленияX 1 наq . Продолжая деление с остатком, будем получать последовательность цифр искомого числа. Цифраan в этой цепочке делений будет последним частным, меньшимq .

Сформулируем полученное правило: для того чтобы перевести целое десятичное число в систему счисления с другим основанием, нужно :

1) основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить по правилам десятичной арифметики;

2) последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;

3) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4) составить число в новой системе счисления, записывая его, начиная с последнего частного.

Пример 1. Перевести число 37 10 в двоичную систему.

Для обозначения цифр в записи числа используем символику: a 5 a 4 a 3 a 2 a 1 a 0

Отсюда: 37 10 = l00l0l 2

Пример 2. Перевести десятичное число 315 в восьмеричную и в шестнадцатеричную системы:

Отсюда следует: 315 10 = 473 8 = 13B 16 . Напомним, что 11 10 = B 16 .

Десятичную дробь X < 1 требуется перевести в систему с основаниемq :X = (0,a –1 a –2 …a –m+1 a –m) q . Нужно найти значащие цифры числа:a –1 , a –2 , …,a –m . Представим число в развернутой форме и умножим его наq :

Отсюда видно, что a –1 есть целая часть произведенияX на числоq . Обозначим заX 1 дробную часть произведения и умножим ее наq :

Следовательно, a –2 есть целая часть произведенияX 1 на числоq . Продолжая умножения, будем получать последовательность цифр. Теперь сформулируем правило:для того чтобы перевести десятичную дробь в систему счисления с другим основанием, нужно :

1) последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

2) полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

3) составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 3. Перевести десятичную дробь 0,1875 в двоичную, восьмеричную и шестнадцатеричную системы.

Здесь в левом столбце находится целая часть чисел, а в правом - дробная.

Отсюда: 0,1875 10 = 0,0011 2 = 0,14 8 = 0,3 16

Перевод смешанных чисел , содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).

Двоичные вычисления

Согласно принципу Джона фон Неймана, компьютер производит вычисления в двоичной системе счисления. В рамках базового курса достаточно ограничиться рассмотрением вычислений с целыми двоичными числами. Для выполнения вычислений с многозначными числами необходимо знать правила сложения и правила умножения однозначных чисел. Вот эти правила:

Принцип перестановочности сложения и умножения работает во всех системах счисления. Приемы выполнения вычислений с многозначными числами в двоичной системе аналогичны десятичной. Иначе говоря, процедуры сложения, вычитания и умножения “столбиком” и деления “уголком” в двоичной системе производятся так же, как и в десятичной.

Рассмотрим правила вычитания и деления двоичных чисел. Операция вычитания является обратной по отношению к сложению. Из приведенной выше таблицы сложения следуют правила вычитания:

0 - 0 = 0; 1 - 0 = 1; 10 - 1 = 1.

Вот пример вычитания многозначных чисел:

Полученный результат можно проверить сложением разности с вычитаемым. Должно получиться уменьшаемое число.

Деление - операция обратная умножению. В любой системе счисления делить на 0 нельзя. Результат деления на 1 равен делимому. Деление двоичного числа на 10 2 ведет к перемещению запятой на один разряд влево, подобно десятичному делению на десять. Например:

Деление на 100 смещает запятую на 2 разряда влево и т.д. В базовом курсе можно не рассматривать сложные примеры деления многозначных двоичных чисел. Хотя способные ученики могут справиться и с ними, поняв общие принципы.

Представление информации, хранящейся в компьютерной памяти в ее истинном двоичном виде, весьма громоздко из-за большого количества цифр. Имеется в виду запись такой информации на бумаге или вывод ее на экран. Для этих целей принято использовать смешанные двоично-восьмеричную или двоично-шестнадцатеричную системы.

Существует простая связь между двоичным и шестнадцатеричным представлением числа. При переводе числа из одной системы в другую одной шестнадцатеричной цифре соответствует четырехразрядный двоичный код. Это соответствие отражено в двоично-шестнадцатеричной таблице:

Двоично-шестнадцатеричная таблица

Такая связь основана на том, что 16 = 2 4 и число различных четырехразрядных комбинаций из цифр 0 и 1 равно 16: от 0000 до 1111. Поэтомуперевод чисел из шестнадцатеричных в двоичные и обратно производится путем формальной перекодировки по двоично-шестнадцатеричной таблице .

Вот пример перевода 32-разрядного двоичного кода в 16-ричную систему:

1011 1100 0001 0110 1011 1111 0010 1010 BC16BF2A

Если дано шестнадцатеричное представление внутренней информации, то его легко перевести в двоичный код. Преимущество шестнадцатеричного представления состоит в том, что оно в 4 раза короче двоичного . Желательно, чтобы ученики запомнили двоично-шестнадцатеричную таблицу. Тогда действительно для них шестнадцатеричное представление станет эквивалентным двоичному.

В двоично-восьмеричной системе каждой восьмеричной цифре соответствует триада двоичных цифр. Эта система позволяет сократить двоичный код в 3 раза.

Лабораторная работа 1. «Системы счисления»

Система счисления – это правила записи чисел с помощью заданного набора специальных знаков – цифр.

Людьми использовались различные способы записи чисел, которые можно объединить в несколько групп: унарная, непозиционные и позиционные.

Две первые представляют скорее исторический интерес, поскольку имеют весьма ограниченное применение в настоящее время.

Унарная система счисления

Унарная система счисления – это система счисления, в которой для записи чисел используется только один знак – 1 («палочка»).

Следующее число получается из предыдущего добавлением новой 1; их количество (сумма) равно самому числу.

Именно такая система применяется для начального обучения счету детей (можно вспомнить «счетные палочки»).

Другими словами, использование именно унарной системы оказывается важным педагогическим приемом для введения детей в мир чисел и действий с ними.

Непозиционные система счисления

Непозиционная система счисления - система, в которой символы, обозначающие то или иное количество, не меняют сво­его значения в зависимости от местоположения (позиции) в изоб­ражении числа.

Из непозиционных наиболее распространенной можно считать римскую систему счисления.

В ней некоторые базовые числа обозначены заглавными латинскими буквами:

1 – I, 5 – V, 10 – X, 50 – L , 100 – C, 500 – D, 1000 – M.

Все другие числа строятся из комбинаций базовых, причем:

    если цифра слева меньше, чем цифра справа, то левая цифра вычитается из правой;

    если цифра справа меньше или равна цифре слева, то эти цифры складываются;

Запись чисел в такой системе громоздка и неудобна, но еще более неудобным оказывается выполнение в ней даже самых простых арифметических операций.

Наконец, отсутствие нуля и знаков для чисел больше M не позволяют римскими цифрами записать любое число (хотя бы натуральное). Используется эта система для нумерации.

Позиционные системы счисления

Позиционными называются системы счисления, в которых значение каждой цифры в изображении числа определяется ее положением (позицией) в ряду других цифр.

Упорядоченный набор символов (цифр) 0 , a v ..., а п ), используемый для представления любых чисел в заданной позиционной си­стеме счисления, называют ееалфавитом, число символов (цифр)алфавита р = п + 1 - ее основанием, а саму систему счисления называютр -ричной.

Основание позиционной системы счисления - количестворазличных цифр, используемых для изображения чисел в данной системе счисления.

Самой привычной для нас является десятичная система счисле­ния. Ее алфавит - {0, 1, 2, 3, 4, 5, б, 7, 8, 9}, а основание р = 10, т. е. в этой системе для записи любых чисел используется только десятьразных символов (цифр). Десятичная система счисления основана на том, что 10 единиц каж­дого разряда объединяются в одну единицу соседнего старшего разряда, поэтому каждый разряд имеет вес, равный степени 10. Сле­довательно, значение одной и той же цифры определяется ее местоположением в изображении числа, характеризуемым степенью числа 10. Например, в изображении числа 222.22 цифра 2 повторяется5 раз, при этом первая слева цифра 2 означает количество сотен (ее вес равен 10 2); вторая - количество десятков (ее вес равен 10 1), третья - количество единиц (ее вес равен 10 0), четвертая - количество десятых долей единицы (ее вес равен 10 -1) и пятая цифра - количество сотых долей единицы (ее вес равен 10 -2), т. е. число 222.22 может быть разложено по степеням числа 10:

222.22 = 2 10 2 + 2 10 1 + 2 10° + 2 10 -1 + 2 10 -2 .

Аналогично 725 = 7 10 2 + 2 10 1 + 5 10°;

1304.5 = 1 10 3 + 3 10 2 + 0 10 1 + 4 10° + 5 10 -1 ,

50328.15 = 5 10 4 + 0 10 3 + 3 10 2 + 2 10 1 + 8 10° + 1 10 -1 + 5 10 -2 .

В общем случае для задания р -ричной системы счисления необходимо определить основание р и алфавит, состоящий из р различ­ных символов (цифр)а р i = 1,...,р.

Любое число X p можно представить в виде поли­нома путем разложения его по степеням числаp :

последовательность из коэффициентов которого представляет со­бой сокращенную запись числа X p :

Точка, отделяющая целую часть числа от дробной, служит для фиксации конкретных значений каждой позиции в этой последо­вательности цифр и является началом отсчета.

Методы перевода чисел. Представление чисел в различных системах счисления

Перевод чисел из одной системы счисления в другую

Одно и то же число может быть записано в различных системах счисления.

Алгоритм перевода целых чисел из q -ричной системы в p -ричную, при q > p

Для замены исходного числа X q равным ему числом X p нужно по правилам q -ричной арифметики целочисленно делить X q на новое основание p . Результаты деления, записанные в порядке от последнего к первому, и окажутся цифрами X p .

Поскольку коэффициенты многочлена неизвестны, обозначим их a i ; получаем:

Обычно описанную процедуру представляют в виде привычной по школе операции деления:

Таким образом, получили X 5 =443.

Проверяем правильность перевода: 4*5 2 +4*5 1 +3*5 0 =100+20+3=123 10 .

Второе, на что нужно обратить внимание – все операции выполнялись по правилам арифметики той системы счисления, от которой осуществлялся перевод (в рассмотренном примере – десятичной).

Алгоритм перевода целых чисел из q -ричной системы в p -ричную, при q < p

Для перевода необходимо представить число X q p -ричной арифметики.

X 6  X 10 , Х= 234 6

234 6 = 26 2 +36 1 +46 0 = 236+36+41 = 94 10

Приведенными алгоритмами удобно пользоваться при переводе числа из десятичной системы в какую-то иную или наоборот.

Они работают и для перевода между любыми иными системами счисления, однако, такой перевод будет затруднен тем, что все арифметические операции необходимо осуществлять по правилам исходной (в первом алгоритме) или конечной (во втором алгоритме) системы.

По этой причине переход, например X 3  X 8 проще осуществить через промежуточный переход к 10-ной системе X 3  X 10  X 8 .

Алгоритм перевода правильной дроби при q > p

Результатом перевода правильной дроби 0,X q будет также правильная дробь 0,X p , которая получится в результате умножения исходной дроби на новое основание p по правилам q -ричной арифметики; целая часть полученного произведения будет цифрой старшего разряда новой дроби; дробную часть полученного произведение следует снова умножить на p и т.д.

Пример: 0,X 10  0,X 2 . 0,Х=0,375 10

Тогда для получения 0,X 2:

0,375*2 = 0 ,750

0,75*2 = 1 ,50

0,5*2 = 1 ,0

Таким образом, 0,375 10 = 0,011 2 .

Проверяем 0,011=0*2 -1 +1*2 -2 +1*2 -3 =0,25+1,125=0,375 10

Алгоритм перевода правильной дроби при q < p

Для перевода X q X p необходимо представить число X q в форме многочлена и выполнить все операции по правилам p -ричной арифметики.

Пример: X 6  X 10 , Х 6 =0,234 6

Для этого

0,234 6 = 26 -1 +36 -2 +46 -3 =0,33(3)+0,083(3)+0,01(851)= 0,43517 10

Проверяем:

0, 43517*6=2 ,61102

0, 61102*6=3, 66612

0,66612*6=3,996724 ,0 {погрешность вычислений в случае получения иррациональных чисел}

Пример: X 2  X 10 , Х=0,10101 2

Для этого

0, 10101 2 = 12 -1 +02 -2 +12 -3 +02 -4 +12 -5 = 0,5+0,125+0,03125= 0,65625 10.

Проверяем:

0,65625*2=1 ,3125

0,3125*2=0, 625

0,625*2=1 ,25

0,25*2=0 ,5

0,5*2=1 ,0 . Все верно

Перевод чисел между системами счисления 2 – 8 – 16

Примеры изображения чисел в данных системах счисления приведены в таблице 1

Таблица 1. Системы счисления

десятичная

двоичная

десятичная

двоичная

Для перевода целого двоичного числа в систему счисления с основанием p = 2 r достаточно данное двоичное число, начиная с младшего разряда, разбить на группы в r цифр каждая и каждую группу независимо перевести в систему p .

Например, для перевода числа 110001 2 в систему счисления p=8, нужно разбить исходное число на группы по три разряда справа налево (8 = 2 3 , следовательно, r = 3) и перевести в 8-ричную систему счисления: 110001 2 =61 8 . Проверяем 110001 2 =32+16+1=49 10 , 6*8 1 +1*8 0 =49 10

Аналогично, разбивая на группы по 4 двоичные цифры, получим 110001 2 = 31 16 .

Для перевода целого числа, записанного в системе счисления с основанием p = 2 r , в двоичную систему достаточно каждую цифру исходного числа независимо заменить соответствующим r -разрядным двоичным числом, дополняя его при необходимости незначащими нулями до группы в r цифр.

Пример: представим число D3 16 в двоичной системе счисления:

Пример, 123 8 = 001010011 2 = 53 16 .

Задания для самостоятельного выполнения

    Переведите число X p p-ричной системы счисления вX q q-ричной системы счисления

    X 5  X 10 , где X 5 =123

    X 3  X 10 , где X 3 =102

    X 10  X 4 , где X 10 =123

    X 10  X 6 , где X 10 =548

    X 5  X 3 , где X 3 =421

    X 2  X 6 , где X 2 =0111001

    X 2  X 16 , где X 2 =10011

    X 2  X 8 , где X 2 =101010

    X 16  X 2 , где X 16 =AD3

    X 8  X 2 , где X 8 =5470

II. Переведите десятичное число в двоичное:

    743 10 , b) 334.12 10 , c) 61.375, d) 160.25 10 , e) 131.82 10

III. Переведите десятичное число в шестнадцатеричное число:

    445 10 , b) 334.12 10 , c) 261.375, d) 160.25 10 , e) 131.82 10

Единичная (унарная) система счисления Список систем счисления

Система счисления:

  • даёт представления множества чисел (целых и/или вещественных);
  • даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
  • отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на позиционные , непозиционные и смешанные .

Позиционные системы счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам ; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления , возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается -ричная система счисления, которая определяется целым числом , называемым основанием системы счисления. Целое число без знака в -ричной системе счисления представляется в виде конечной линейной комбинации степеней числа :

, где - это целые числа, называемые цифрами , удовлетворяющие неравенству .

Каждая степень в такой записи называется весовым коэффициентом разряда . Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно, в ненулевых числах , левые нули опускаются.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Наиболее употребляемыми в настоящее время позиционными системами являются:

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Смешанные системы счисления

Смешанная система счисления является обобщением -ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел , и каждое число в ней представляется как линейная комбинация :

, где на коэффициенты , называемые как и прежде цифрами , накладываются некоторые ограничения.

Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.

В зависимости от вида как функции от смешанные системы счисления могут быть степенными , показательными и т. п. Когда для некоторого , смешанная система счисления совпадает с показательной -ричной системой счисления.

Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина « дней, часов, минут, секунд» соответствует значению секунд.

Факториальная система счисления

В факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:

, где .

Факториальная система счисления используется при декодировании перестановок списками инверсий : имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)

Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 - (1,2,3,4,5) до перестановки с номером 119 - (5,4,3,2,1)), найдём 101-ую перестановку: 100 = 4!*4 + 3!*0 + 2!*2 + 1!*0 = 96 + 4; положим ti - коэффициент при числе i!, тогда t4 = 4, t3 = 0, t2 = 2, t1 = 0 , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) - таким образом, 101-я перестановка будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.

Фибоначчиева система счисления основывается на числах Фибоначчи . Каждое натуральное число в ней представляется в виде:

, где - числа Фибоначчи, , при этом в коэффициентах есть конечное количество единиц и не встречаются две единицы подряд.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления

Представление, использующее биномиальные коэффициенты

, где .

Система остаточных классов (СОК)

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках . СОК определяется набором взаимно простых модулей с произведением так, что каждому целому числу из отрезка ставится в соответствие набор вычетов , где

При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка .

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленых в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям .

Система счисления Штерна–Броко - способ записи положительных рациональных чисел, основанный на дереве Штерна–Броко .

Системы счисления разных народов

Единичная система счисления

По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т.д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком - так возникают прообразы будущих цифр.

Древнеегипетская система счисления

Вавилонская система счисления

Алфавитные системы счисления

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.

Еврейская система счисления

Греческая система счисления

Римская система счисления

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:
I обозначает 1,
V - 5,
X - 10,
L - 50,
C - 100,
D - 500,
M - 1000

Например, II = 1 + 1 = 2
здесь символ I обозначает 1 независимо от места в числе.

На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:

IV = 4, в то время как:
VI = 6

Система счисления майя

См. также

Примечания

Ссылки

  • Гашков С. Б. Системы счисления и их применение . - М .: МЦНМО , 2004. - (Библиотека «Математическое просвещение»).
  • Фомин С. В. Системы счисления . - М .: Наука, 1987. - 48 с. - (Популярные лекции по математике).
  • Яглом И. Системы счисления // Квант . - 1970. - № 6. - С. 2-10.
  • Цифры и системы счисления . Онлайн Энциклопедия Кругосвет.
  • Стахов А. Роль систем счисления в истории компьютеров .
  • Микушин А. В. Системы счисления. Курс лекций "Цифровые устройства и микропроцессоры"
  • Butler J. T., Sasao T. Redundant Multiple-Valued Number Systems В статье рассмотрены системы счисления, использующие цифры больше единицы и допускающие избыточность в представлении чисел

Wikimedia Foundation . 2010 .



 

Возможно, будет полезно почитать: