Funcții elementare de bază, proprietățile și graficele lor. Studiul graficului funcției Funcția ur

Să alegem un sistem de coordonate dreptunghiular pe plan și să trasăm valorile argumentului pe axa absciselor X, iar pe ordonată - valorile funcției y = f(x).

Graficul funcției y = f(x) este mulțimea tuturor punctelor ale căror abscise aparțin domeniului de definire a funcției, iar ordonatele sunt egale cu valorile corespunzătoare ale funcției.

Cu alte cuvinte, graficul funcției y = f (x) este mulțimea tuturor punctelor planului, coordonatele X, la care satisfac relatia y = f(x).



În fig. 45 și 46 prezintă grafice ale funcțiilor y = 2x + 1Și y = x 2 - 2x.

Strict vorbind, ar trebui să distingem între un grafic al unei funcții (a cărui definiție matematică exactă a fost dată mai sus) și o curbă desenată, care oferă întotdeauna doar o schiță mai mult sau mai puțin precisă a graficului (și chiar și atunci, de regulă, nu întregul grafic, ci doar partea lui situată în părțile finale ale planului). În cele ce urmează, totuși, vom spune în general „grafic” mai degrabă decât „schiță grafică”.

Folosind un grafic, puteți găsi valoarea unei funcții într-un punct. Și anume, dacă punctul x = a aparține domeniului de definire a funcției y = f(x), apoi pentru a găsi numărul fa)(adică valorile funcției la punctul x = a) ar trebui să faci asta. Este necesar prin punctul de abscisă x = a trageți o linie dreaptă paralelă cu axa ordonatelor; această linie va intersecta graficul funcției y = f(x) la un moment dat; ordonata acestui punct va fi, în virtutea definiţiei graficului, egală cu fa)(Fig. 47).



De exemplu, pentru funcție f(x) = x 2 - 2x folosind graficul (Fig. 46) găsim f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 etc.

Un grafic al funcției ilustrează clar comportamentul și proprietățile unei funcții. De exemplu, luând în considerare fig. 46 este clar că funcţia y = x 2 - 2x ia valori pozitive când X< 0 iar la x > 2, negativ - la 0< x < 2; наименьшее значение функция y = x 2 - 2x acceptă la x = 1.

Pentru a reprezenta grafic o funcție f(x) trebuie să găsiți toate punctele avionului, coordonatele X,la care satisfac ecuația y = f(x). În cele mai multe cazuri, acest lucru este imposibil de făcut, deoarece există un număr infinit de astfel de puncte. Prin urmare, graficul funcției este reprezentat aproximativ - cu o precizie mai mare sau mai mică. Cea mai simplă este metoda de a reprezenta un grafic folosind mai multe puncte. Constă în faptul că argumentul X dați un număr finit de valori - să spunem, x 1, x 2, x 3,..., x k și creați un tabel care include valorile funcției selectate.

Tabelul arată astfel:



După ce am compilat un astfel de tabel, putem contura mai multe puncte pe graficul funcției y = f(x). Apoi, conectând aceste puncte cu o linie netedă, obținem o vedere aproximativă a graficului funcției y = f(x).

Trebuie remarcat, totuși, că metoda de reprezentare în mai multe puncte este foarte nesigură. De fapt, comportamentul graficului dintre punctele dorite și comportamentul acestuia în afara segmentului dintre punctele extreme luate rămâne necunoscut.

Exemplul 1. Pentru a reprezenta grafic o funcție y = f(x) cineva a compilat un tabel de valori ale argumentelor și ale funcției:




Cele cinci puncte corespunzătoare sunt prezentate în Fig. 48.



Pe baza locației acestor puncte, a concluzionat că graficul funcției este o linie dreaptă (prezentată în Fig. 48 cu o linie punctată). Această concluzie poate fi considerată de încredere? Cu excepția cazului în care există considerații suplimentare care să susțină această concluzie, cu greu poate fi considerată de încredere. de încredere.

Pentru a fundamenta afirmația noastră, luați în considerare funcția

.

Calculele arată că valorile acestei funcții la punctele -2, -1, 0, 1, 2 sunt descrise exact de tabelul de mai sus. Cu toate acestea, graficul acestei funcții nu este deloc o linie dreaptă (este prezentat în Fig. 49). Un alt exemplu ar fi funcția y = x + l + sinπx; semnificațiile sale sunt descrise și în tabelul de mai sus.

Aceste exemple arată că, în forma sa „pură”, metoda de a reprezenta un grafic folosind mai multe puncte este nesigură. Prin urmare, pentru a reprezenta graficul unei funcții date, se procedează de obicei după cum urmează. În primul rând, studiem proprietățile acestei funcții, cu ajutorul căreia putem construi o schiță a graficului. Apoi, calculând valorile funcției în mai multe puncte (ale căror alegere depinde de proprietățile stabilite ale funcției), se găsesc punctele corespunzătoare ale graficului. Și în final, o curbă este trasată prin punctele construite folosind proprietățile acestei funcții.

Ne vom uita la unele (cele mai simple și mai frecvent utilizate) proprietăți ale funcțiilor folosite pentru a găsi o schiță grafică mai târziu, dar acum ne vom uita la câteva metode utilizate în mod obișnuit pentru construirea de grafice.


Graficul funcției y = |f(x)|.

Adesea este necesar să reprezentați o funcție y = |f(x)|, unde f(x) - funcţie dată. Să vă reamintim cum se face acest lucru. Prin definirea valorii absolute a unui număr, putem scrie

Aceasta înseamnă că graficul funcției y =|f(x)| poate fi obținută din grafic, funcție y = f(x) astfel: toate punctele de pe graficul funcţiei y = f(x), ale căror ordonate sunt nenegative, trebuie lăsate neschimbate; mai departe, în locul punctelor graficului funcției y = f(x) având coordonate negative, ar trebui să construiți punctele corespunzătoare pe graficul funcției y = -f(x)(adică o parte a graficului funcției
y = f(x), care se află sub axă X, ar trebui să fie reflectată simetric în jurul axei X).



Exemplul 2. Reprezentați grafic funcția y = |x|.

Să luăm graficul funcției y = x(Fig. 50, a) și o parte a acestui grafic la X< 0 (întins sub ax X) reflectată simetric în raport cu axa X. Ca rezultat, obținem un grafic al funcției y = |x|(Fig. 50, b).

Exemplul 3. Reprezentați grafic funcția y = |x 2 - 2x|.


În primul rând, să diagramăm funcția y = x 2 - 2x. Graficul acestei funcții este o parabolă, ale cărei ramuri sunt îndreptate în sus, vârful parabolei are coordonatele (1; -1), graficul său intersectează axa x în punctele 0 și 2. În intervalul (0; 2) funcția ia valori negative, prin urmare această parte a graficului reflectată simetric față de axa absciselor. Figura 51 prezintă graficul funcției y = |x 2 -2x|, pe baza graficului funcției y = x 2 - 2x

Graficul funcției y = f(x) + g(x)

Luați în considerare problema construirii unui grafic al unei funcții y = f(x) + g(x). dacă sunt date grafice de funcții y = f(x)Și y = g(x).

Rețineți că domeniul de definiție al funcției y = |f(x) + g(x)| este mulțimea tuturor acelor valori ale lui x pentru care sunt definite ambele funcții y = f(x) și y = g(x), adică acest domeniu de definiție este intersecția domeniilor de definiție, funcțiile f(x) și g(x).

Lasă punctele (x 0 , y 1) Și (x 0, y 2) aparțin respectiv graficelor de funcții y = f(x)Și y = g(x), adică y 1 = f(x 0), y 2 = g(x 0). Atunci punctul (x0;. y1 + y2) aparține graficului funcției y = f(x) + g(x)(pentru f(x 0) + g(x 0) = y 1 +y2),. și orice punct din graficul funcției y = f(x) + g(x) poate fi obtinut in acest fel. Prin urmare, graficul funcției y = f(x) + g(x) pot fi obținute din graficele de funcții y = f(x). Și y = g(x)înlocuind fiecare punct ( x n, y 1) grafică funcțională y = f(x) punct (x n, y 1 + y 2), Unde y 2 = g(x n), adică prin deplasarea fiecărui punct ( x n, y 1) graficul funcției y = f(x) de-a lungul axei la prin suma y 1 = g(x n). În acest caz, sunt luate în considerare numai astfel de puncte X n pentru care sunt definite ambele funcții y = f(x)Și y = g(x).

Această metodă de reprezentare a unei funcții y = f(x) + g(x) se numește adunarea graficelor de funcții y = f(x)Și y = g(x)

Exemplul 4. În figură, un grafic al funcției a fost construit folosind metoda de adunare a graficelor
y = x + sinx.

La trasarea unei funcții y = x + sinx am crezut că f(x) = x, A g(x) = sinx. Pentru a reprezenta graficul funcției, selectăm puncte cu abscise -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Valori f(x) = x, g(x) = sinx, y = x + sinx Să calculăm la punctele selectate și să plasăm rezultatele în tabel.


Acest material didactic este doar pentru referință și se referă la o gamă largă de subiecte. Articolul oferă o prezentare generală a graficelor funcțiilor elementare de bază și ia în considerare cea mai importantă problemă - cum să construiți un grafic corect și RAPID. În cursul studierii matematicii superioare fără cunoașterea graficelor funcțiilor elementare de bază, va fi dificil, așa că este foarte important să ne amintim cum arată graficele unei parabole, hiperbole, sinus, cosinus etc. și amintiți-vă câteva a semnificaţiilor funcţiilor. Vom vorbi și despre câteva proprietăți ale principalelor funcții.

Nu pretind completitatea și temeinicia științifică a materialelor se va pune accent, în primul rând, pe practică - acele lucruri cu care se întâlnește literalmente la fiecare pas, în orice subiect de matematică superioară. Grafice pentru manechine? S-ar putea spune așa.

Datorită numeroaselor solicitări din partea cititorilor cuprins pe care se poate face clic:

În plus, există un rezumat ultra-scurt pe această temă
– stăpânește 16 tipuri de diagrame studiind șase pagini!

Serios, șase, până și eu am fost surprins. Acest rezumat conține grafică îmbunătățită și este disponibil pentru o taxă nominală poate fi vizualizată. Este convenabil să imprimați fișierul, astfel încât graficele să fie întotdeauna la îndemână. Vă mulțumim pentru susținerea proiectului!

Și să începem imediat:

Cum se construiesc corect axele de coordonate?

În practică, testele sunt aproape întotdeauna finalizate de către elevi în caiete separate, aliniate într-un pătrat. De ce ai nevoie de marcaje în carouri? La urma urmei, munca, în principiu, se poate face pe coli A4. Și cușca este necesară doar pentru proiectarea de înaltă calitate și precisă a desenelor.

Orice desen al unui grafic de funcții începe cu axe de coordonate.

Desenele pot fi bidimensionale sau tridimensionale.

Să luăm mai întâi în considerare cazul bidimensional Sistemul de coordonate carteziene dreptunghiulare:

1) Desenați axele de coordonate. Axa se numește axa x , iar axa este axa y . Întotdeauna încercăm să le desenăm îngrijită și nu strâmbă. De asemenea, săgețile nu ar trebui să semene cu barba lui Papa Carlo.

2) Semnăm axele cu litere mari „X” și „Y”. Nu uitați să etichetați axele.

3) Setați scara de-a lungul axelor: trageți un zero și doi uni. Când faceți un desen, scara cea mai convenabilă și folosită frecvent este: 1 unitate = 2 celule (desen din stânga) - dacă este posibil, rămâneți de ea. Totuși, din când în când se întâmplă ca desenul să nu încapă pe foaia caietului - atunci reducem scara: 1 unitate = 1 celulă (desen din dreapta). Este rar, dar se întâmplă ca scara desenului să fie redusă (sau mărită) și mai mult

NU ESTE NEVOIE să „mitralieră” …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Căci planul de coordonate nu este un monument al lui Descartes, iar elevul nu este un porumbel. Am pus zeroȘi două unități de-a lungul axelor. Uneori în loc de unități, este convenabil să „marcați” alte valori, de exemplu, „două” pe axa absciselor și „trei” pe axa ordonatelor - și acest sistem (0, 2 și 3) va defini, de asemenea, în mod unic grila de coordonate.

Este mai bine să estimați dimensiunile estimate ale desenului ÎNAINTE de a construi desenul. Deci, de exemplu, dacă sarcina necesită desenarea unui triunghi cu vârfuri , , , atunci este complet clar că scara populară de 1 unitate = 2 celule nu va funcționa. De ce? Să ne uităm la punctul - aici va trebui să măsurați cincisprezece centimetri mai jos și, evident, desenul nu se va potrivi (sau abia se va potrivi) pe o foaie de caiet. Prin urmare, selectăm imediat o scară mai mică: 1 unitate = 1 celulă.

Apropo, despre centimetri și celule de notebook. Este adevărat că 30 de celule de notebook conțin 15 centimetri? Pentru distracție, măsurați 15 centimetri în caiet cu o riglă. În URSS, s-ar putea să fi fost adevărat... Este interesant de observat că dacă măsurați aceiași centimetri pe orizontală și pe verticală, rezultatele (în celule) vor fi diferite! Strict vorbind, caietele moderne nu sunt în carouri, ci dreptunghiulare. Acest lucru poate părea o prostie, dar desenarea, de exemplu, a unui cerc cu o busolă în astfel de situații este foarte incomod. Sincer să fiu, în astfel de momente începi să te gândești la corectitudinea tovarășului Stalin, care a fost trimis în lagăre pentru muncă de hack în producție, ca să nu mai vorbim de industria auto autohtonă, căderea avioanelor sau exploziile centralelor electrice.

Apropo de calitate, sau o scurtă recomandare despre papetărie. Astăzi, majoritatea caietelor aflate în vânzare sunt, cel puțin, o porcărie completă. Din motivul că se udă, și nu numai de la pixurile cu gel, ci și de la pixurile cu bilă! Economisesc bani pe hârtie. Pentru a finaliza testele, recomand să folosiți caiete de la Fabrica de celuloză și hârtie din Arkhangelsk (18 coli, pătrat) sau „Pyaterochka”, deși este mai scump. Este indicat să alegeți un pix cu gel, chiar și cea mai ieftină umplutură de gel chinezească este mult mai bună decât un pix, care fie pătează, fie rupe hârtia. Singurul pix „competitiv” pe care mi-l amintesc este Erich Krause. Ea scrie clar, frumos și consecvent – ​​fie cu miezul plin, fie cu unul aproape gol.

În plus: Viziunea unui sistem de coordonate dreptunghiulare prin ochii geometriei analitice este acoperită în articol Dependența liniară (non) a vectorilor. Baza vectorilor, informații detaliate despre sferturile de coordonate pot fi găsite în al doilea paragraf al lecției Inegalități liniare.

carcasă 3D

Aici este aproape la fel.

1) Desenați axele de coordonate. Standard: axa aplicate – îndreptată în sus, axa – îndreptată spre dreapta, axa – îndreptată în jos spre stânga strict la un unghi de 45 de grade.

2) Etichetați axele.

3) Setați scara de-a lungul axelor. Scara de-a lungul axei este de două ori mai mică decât scara de-a lungul celorlalte axe. De asemenea, rețineți că în desenul din dreapta am folosit o „crestătură” non-standard de-a lungul axei (această posibilitate a fost deja menționată mai sus). Din punctul meu de vedere, acest lucru este mai precis, mai rapid și mai plăcut din punct de vedere estetic - nu este nevoie să căutați mijlocul celulei la microscop și să „sculptați” o unitate apropiată de originea coordonatelor.

Când faceți un desen 3D, acordați din nou prioritate la scară
1 unitate = 2 celule (desen din stânga).

Pentru ce sunt toate aceste reguli? Regulile sunt facute pentru a fi incalcate. Asta voi face acum. Cert este că desenele ulterioare ale articolului vor fi făcute de mine în Excel, iar axele de coordonate vor arăta incorect din punctul de vedere al designului corect. Aș putea desena toate graficele manual, dar este de fapt înfricoșător să le desenezi, deoarece Excel este reticent să le deseneze mult mai precis.

Grafice și proprietăți de bază ale funcțiilor elementare

O funcție liniară este dată de ecuație. Graficul funcțiilor liniare este direct. Pentru a construi o linie dreaptă este suficient să cunoaștem două puncte.

Exemplul 1

Construiți un grafic al funcției. Să găsim două puncte. Este avantajos să alegeți zero ca unul dintre puncte.

Daca atunci

Să luăm un alt punct, de exemplu, 1.

Daca atunci

La finalizarea sarcinilor, coordonatele punctelor sunt de obicei rezumate într-un tabel:


Și valorile însele sunt calculate oral sau pe o schiță, un calculator.

Au fost găsite două puncte, să facem desenul:


Când pregătim un desen, semnăm întotdeauna grafica.

Ar fi util să amintim cazuri speciale ale unei funcții liniare:


Observați cum am pus semnăturile, semnăturile nu trebuie să permită discrepanțe la studierea desenului. În acest caz, a fost extrem de nedorit să se pună o semnătură lângă punctul de intersecție al liniilor, sau în dreapta jos între grafice.

1) O funcție liniară de forma () se numește proporționalitate directă. De exemplu, . Un grafic de proporționalitate directă trece întotdeauna prin origine. Astfel, construirea unei linii drepte este simplificată - este suficient să găsiți doar un punct.

2) O ecuație de formă specifică o linie dreaptă paralelă cu axa, în special, axa însăși este dată de ecuație. Graficul funcției este reprezentat imediat, fără a găsi niciun punct. Adică, intrarea trebuie înțeleasă după cum urmează: „y este întotdeauna egal cu –4, pentru orice valoare a lui x”.

3) O ecuație de formă specifică o linie dreaptă paralelă cu axa, în special, axa însăși este dată de ecuație. Graficul funcției este de asemenea trasat imediat. Intrarea ar trebui să fie înțeleasă după cum urmează: „x este întotdeauna, pentru orice valoare a lui y, egal cu 1”.

Unii se vor întreba, de ce să-ți amintești de clasa a VI-a?! Așa este, poate așa este, dar de-a lungul anilor de practică am întâlnit o duzină de studenți care au fost derutați de sarcina de a construi un grafic ca sau.

Construirea unei linii drepte este cea mai comună acțiune la realizarea desenelor.

Linia dreaptă este discutată în detaliu în cursul geometriei analitice, iar cei interesați se pot referi la articol Ecuația unei drepte pe un plan.

Graficul unei funcții pătratice, cubice, graficul unui polinom

Parabolă. Graficul unei funcții pătratice () reprezintă o parabolă. Luați în considerare celebrul caz:

Să ne amintim câteva proprietăți ale funcției.

Deci, soluția ecuației noastre: – în acest punct se află vârful parabolei. De ce este așa poate fi învățat din articolul teoretic despre derivată și din lecția despre extremele funcției. Între timp, să calculăm valoarea „Y” corespunzătoare:

Astfel, vârful este în punct

Acum găsim alte puncte, în timp ce folosim cu nerăbdare simetria parabolei. Trebuie remarcat faptul că funcția nu este chiar, dar, cu toate acestea, nimeni nu a anulat simetria parabolei.

În ce ordine să găsim punctele rămase, cred că va fi clar din masa finală:

Acest algoritm de construcție poate fi numit în mod figurat „navetă” sau principiul „înainte și înapoi” cu Anfisa Cehova.

Să facem desenul:


Din graficele examinate, îmi vine în minte o altă caracteristică utilă:

Pentru o funcție pătratică () următoarele este adevărată:

Dacă , atunci ramurile parabolei sunt îndreptate în sus.

Dacă , atunci ramurile parabolei sunt îndreptate în jos.

Cunoștințe aprofundate despre curbă pot fi obținute în lecția Hiperbolă și parabolă.

O parabolă cubică este dată de funcție. Iată un desen cunoscut de la școală:


Să enumerăm principalele proprietăți ale funcției

Graficul unei funcții

Reprezintă una dintre ramurile unei parabole. Să facem desenul:


Principalele proprietăți ale funcției:

În acest caz, axa este asimptotă verticală pentru graficul unei hiperbole la .

Ar fi o greșeală GRAVE dacă, atunci când întocmești un desen, ai lăsa neglijent ca graficul să se intersecteze cu o asimptotă.

De asemenea, limitele unilaterale ne spun că hiperbola nelimitat de susȘi nelimitat de jos.

Să examinăm funcția la infinit: , adică dacă începem să ne mișcăm de-a lungul axei la stânga (sau la dreapta) la infinit, atunci „jocurile” vor fi într-un pas ordonat infinit de aproape se apropie de zero și, în consecință, de ramurile hiperbolei infinit de aproape se apropie de ax.

Deci axa este asimptotă orizontală pentru graficul unei funcții, dacă „x” tinde spre plus sau minus infinit.

Funcția este ciudat, și, prin urmare, hiperbola este simetrică față de origine. Acest fapt este evident din desen, în plus, este ușor de verificat analitic: .

Graficul unei funcții de forma () reprezintă două ramuri ale unei hiperbole.

Dacă , atunci hiperbola este situată în primul și al treilea trimestru de coordonate(vezi poza de mai sus).

Dacă , atunci hiperbola este situată în al doilea și al patrulea trimestru de coordonate.

Modelul indicat al rezidenței hiperbolei este ușor de analizat din punctul de vedere al transformărilor geometrice ale graficelor.

Exemplul 3

Construiți ramura dreaptă a hiperbolei

Folosim metoda de construcție punctuală și este avantajos să selectăm valorile astfel încât să fie divizibile cu un întreg:

Să facem desenul:


Nu va fi dificil să construiți ramura stângă a hiperbolei, ciudatenia funcției va ajuta aici. Aproximativ vorbind, în tabelul de construcție punctual, adăugăm mental un minus fiecărui număr, punem punctele corespunzătoare și desenăm a doua ramură.

Informații geometrice detaliate despre linia luată în considerare pot fi găsite în articolul Hiperbolă și parabolă.

Graficul unei funcții exponențiale

În această secțiune, voi lua în considerare imediat funcția exponențială, deoarece în problemele de matematică superioară în 95% din cazuri apare exponențialul.

Permiteți-mi să vă reamintesc că acesta este un număr irațional: , acesta va fi necesar la construirea unui grafic, pe care, de fapt, îl voi construi fără ceremonie. Trei puncte sunt probabil suficiente:

Să lăsăm graficul funcției în pace pentru moment, mai multe despre el mai târziu.

Principalele proprietăți ale funcției:

Graficele de funcții etc., arată fundamental la fel.

Trebuie să spun că al doilea caz apare mai rar în practică, dar apare, așa că am considerat că este necesar să îl includ în acest articol.

Graficul unei funcții logaritmice

Luați în considerare o funcție cu un logaritm natural.
Să facem un desen punct cu punct:

Dacă ați uitat ce este un logaritm, vă rugăm să consultați manualele școlare.

Principalele proprietăți ale funcției:

Domeniu:

Interval de valori: .

Funcția nu este limitată de mai sus: , deși încet, dar ramura logaritmului urcă până la infinit.
Să examinăm comportamentul funcției aproape de zero din dreapta: . Deci axa este asimptotă verticală deoarece graficul unei funcții ca „x” tinde spre zero din dreapta.

Este imperativ să cunoașteți și să vă amintiți valoarea tipică a logaritmului: .

În principiu, graficul logaritmului la bază arată la fel: , , (logaritmul zecimal la baza 10), etc. Mai mult, cu cât baza este mai mare, cu atât graficul va fi mai plat.

Nu vom lua în considerare cazul; nu-mi amintesc ultima dată când am construit un grafic pe o astfel de bază. Iar logaritmul pare a fi un invitat foarte rar în problemele de matematică superioară.

La sfârșitul acestui paragraf voi mai spune un fapt: Funcția exponențială și funcția logaritmică– acestea sunt două funcții reciproc inverse. Dacă te uiți îndeaproape la graficul logaritmului, poți vedea că acesta este același exponent, doar că este situat puțin diferit.

Grafice ale funcțiilor trigonometrice

De unde începe chinul trigonometric la școală? Dreapta. Din sinus

Să diagramăm funcția

Această linie se numește sinusoid.

Permiteți-mi să vă reamintesc că „pi” este un număr irațional: , iar în trigonometrie vă face ochii orbitori.

Principalele proprietăți ale funcției:

Această funcție este periodic cu punct . Ce înseamnă? Să ne uităm la segment. În stânga și în dreapta acestuia, exact aceeași bucată a graficului se repetă la nesfârșit.

Domeniu: , adică pentru orice valoare a lui „x” există o valoare sinus.

Interval de valori: . Funcția este limitat: , adică toate „jocurile” stau strict în segmentul .
Acest lucru nu se întâmplă: sau, mai precis, se întâmplă, dar aceste ecuații nu au o soluție.

O funcție liniară este o funcție de forma y=kx+b, unde x este variabila independentă, k și b sunt orice numere.
Graficul unei funcții liniare este o linie dreaptă.

1. Pentru a reprezenta graficul unei funcții, avem nevoie de coordonatele a două puncte aparținând graficului funcției. Pentru a le găsi, trebuie să luați două valori x, să le înlocuiți în ecuația funcției și să le utilizați pentru a calcula valorile y corespunzătoare.

De exemplu, pentru a reprezenta grafic funcția y= x+2, este convenabil să luăm x=0 și x=3, atunci ordonatele acestor puncte vor fi egale cu y=2 și y=3. Obținem punctele A(0;2) și B(3;3). Să le conectăm și să obținem un grafic al funcției y= x+2:

2. În formula y=kx+b, numărul k se numește coeficient de proporționalitate:
dacă k>0, atunci funcția y=kx+b crește
dacă k
Coeficientul b arată deplasarea graficului funcției de-a lungul axei OY:
dacă b>0, atunci graficul funcției y=kx+b se obține din graficul funcției y=kx prin deplasarea b unități în sus de-a lungul axei OY
dacă b
Figura de mai jos prezintă grafice ale funcțiilor y=2x+3; y= ½ x+3; y=x+3

Rețineți că în toate aceste funcții coeficientul k Peste zero, iar funcţiile sunt crescând. Mai mult, cu cât valoarea lui k este mai mare, cu atât este mai mare unghiul de înclinare a dreptei față de direcția pozitivă a axei OX.

În toate funcțiile b=3 - și vedem că toate graficele intersectează axa OY în punctul (0;3)

Acum luați în considerare graficele funcțiilor y=-2x+3; y=- ½ x+3; y=-x+3

De data aceasta în toate funcțiile coeficientul k mai putin de zero si functii sunt în scădere. Coeficientul b=3, iar graficele, ca și în cazul precedent, intersectează axa OY în punctul (0;3)

Se consideră graficele funcțiilor y=2x+3; y=2x; y=2x-3

Acum, în toate ecuațiile de funcție, coeficienții k sunt egali cu 2. Și avem trei drepte paralele.

Dar coeficienții b sunt diferiți, iar aceste grafice intersectează axa OY în puncte diferite:
Graficul funcției y=2x+3 (b=3) intersectează axa OY în punctul (0;3)
Graficul funcției y=2x (b=0) intersectează axa OY în punctul (0;0) - originea.
Graficul funcției y=2x-3 (b=-3) intersectează axa OY în punctul (0;-3)

Deci, dacă cunoaștem semnele coeficienților k și b, atunci ne putem imagina imediat cum arată graficul funcției y=kx+b.
Dacă k 0

Dacă k>0 și b>0, atunci graficul funcției y=kx+b arată astfel:

Dacă k>0 și b, atunci graficul funcției y=kx+b arată astfel:

Dacă k, atunci graficul funcției y=kx+b arată astfel:

Dacă k=0, atunci funcția y=kx+b se transformă în funcția y=b și graficul ei arată astfel:

Ordonatele tuturor punctelor de pe graficul funcției y=b sunt egale cu b Dacă b=0, atunci graficul funcției y=kx (proporționalitate directă) trece prin origine:

3. Să notăm separat graficul ecuației x=a. Graficul acestei ecuații este o dreaptă paralelă cu axa OY, toate punctele care au o abscisă x=a.

De exemplu, graficul ecuației x=3 arată astfel:
Atenţie! Ecuația x=a nu este o funcție, deci o valoare a argumentului corespunde diferitelor valori ale funcției, care nu corespunde definiției unei funcții.


4. Condiție pentru paralelismul a două linii:

Graficul funcției y=k 1 x+b 1 este paralel cu graficul funcției y=k 2 x+b 2 dacă k 1 =k 2

5. Condiția ca două drepte să fie perpendiculare:

Graficul funcției y=k 1 x+b 1 este perpendicular pe graficul funcției y=k 2 x+b 2 dacă k 1 *k 2 =-1 sau k 1 =-1/k 2

6. Puncte de intersecție ale graficului funcției y=kx+b cu axele de coordonate.

Cu axa OY. Abscisa oricărui punct aparținând axei OY este egală cu zero. Prin urmare, pentru a găsi punctul de intersecție cu axa OY, trebuie să înlocuiți zero în ecuația funcției în loc de x. Obținem y=b. Adică, punctul de intersecție cu axa OY are coordonatele (0; b).

Cu axa OX: ordonata oricărui punct aparținând axei OX este zero. Prin urmare, pentru a găsi punctul de intersecție cu axa OX, trebuie să înlocuiți zero în ecuația funcției în loc de y. Se obține 0=kx+b. Prin urmare x=-b/k. Adică, punctul de intersecție cu axa OX are coordonatele (-b/k;0):

Funcția de construire

Oferim atenției dumneavoastră un serviciu de realizare a graficelor de funcții online, toate drepturile cărora le aparțin companiei Desmos. Utilizați coloana din stânga pentru a introduce funcții. Puteți introduce manual sau folosind tastatura virtuală din partea de jos a ferestrei. Pentru a mări fereastra cu graficul, puteți ascunde atât coloana din stânga, cât și tastatura virtuală.

Beneficiile graficelor online

  • Afișarea vizuală a funcțiilor introduse
  • Construirea de grafice foarte complexe
  • Construcția graficelor specificate implicit (de exemplu, elipsa x^2/9+y^2/16=1)
  • Posibilitatea de a salva diagrame și de a primi un link către ele, care devine disponibil pentru toată lumea de pe Internet
  • Controlând scara și culoarea liniilor
  • Posibilitatea de a trasa grafice pe puncte, folosind constante
  • Trasarea mai multor grafice de funcții simultan
  • Trasarea în coordonate polare (utilizați r și θ(\theta))

Cu noi este ușor să construiți grafice de complexitate variată online. Construcția se face instantaneu. Serviciul este solicitat pentru găsirea punctelor de intersecție ale funcțiilor, pentru reprezentarea graficelor pentru a le muta în continuare într-un document Word ca ilustrații la rezolvarea problemelor, pentru analizarea caracteristicilor comportamentale ale graficelor de funcții. Browserul optim pentru lucrul cu diagrame pe această pagină de site este Google Chrome. Funcționarea corectă nu este garantată atunci când utilizați alte browsere.

Elevii se confruntă cu sarcina de a construi un grafic al unei funcții chiar la începutul studiului algebrei și continuă să le construiască an de an. Pornind de la graficul unei funcții liniare, pentru care trebuie să cunoașteți doar două puncte, până la o parabolă, care necesită deja 6 puncte, o hiperbolă și o undă sinusoidală. În fiecare an funcțiile devin din ce în ce mai complexe și nu mai este posibilă construirea graficelor lor folosind un șablon este necesar să se efectueze studii mai complexe folosind derivate și limite.

Să ne dăm seama cum să găsim graficul unei funcții? Pentru a face acest lucru, să începem cu cele mai simple funcții, ale căror grafice sunt reprezentate punct cu punct, apoi să luăm în considerare un plan pentru construirea de funcții mai complexe.

Reprezentarea grafică a unei funcții liniare

Pentru a construi cele mai simple grafice, utilizați un tabel cu valorile funcției. Graficul unei funcții liniare este o linie dreaptă. Să încercăm să găsim punctele pe graficul funcției y=4x+5.

  1. Pentru a face acest lucru, să luăm două valori arbitrare ale variabilei x, să le înlocuim una câte una în funcție, să găsim valoarea variabilei y și să introducem totul în tabel.
  2. Luați valoarea x=0 și înlocuiți-o în funcție în loc de x - 0. Obținem: y=4*0+5, adică y=5, scrieți această valoare în tabel sub 0. În mod similar, luați x= 0, obținem y=4*1+5 , y=9.
  3. Acum, pentru a construi un grafic al funcției, trebuie să reprezentați aceste puncte pe planul de coordonate. Apoi trebuie să desenați o linie dreaptă.

Reprezentarea grafică a unei funcții pătratice

O funcție pătratică este o funcție de forma y=ax 2 +bx +c, unde x este o variabilă, a,b,c sunt numere (a nu este egal cu 0). De exemplu: y=x 2, y=x 2 +5, y=(x-3) 2, y=2x 2 +3x+5.

Pentru a construi cea mai simplă funcție pătratică y=x 2, se iau de obicei 5-7 puncte. Să luăm valorile pentru variabila x: -2, -1, 0, 1, 2 și să găsim valorile lui y în același mod ca atunci când construim primul grafic.

Graficul unei funcții pătratice se numește parabolă. După construirea graficelor de funcții, elevii au noi sarcini legate de grafic.

Exemplul 1: găsiți abscisa punctului grafic al funcției y=x 2 dacă ordonata este 9. Pentru a rezolva problema, trebuie să înlocuiți valoarea sa 9 în funcție în loc de y. Obținem 9=x 2 și rezolvăm această ecuație. x=3 și x=-3. Acest lucru poate fi văzut și pe graficul funcției.

Studierea unei funcții și trasarea graficului acesteia

Pentru a reprezenta grafice ale funcțiilor mai complexe, este necesar să se efectueze mai mulți pași care vizează studierea acesteia. Pentru a face acest lucru aveți nevoie de:

  1. Găsiți domeniul de definire al funcției. Domeniul definiției sunt toate valorile pe care variabila x le poate lua. Acele puncte în care numitorul devine 0 sau expresia radicală devine negativă ar trebui excluse din domeniul definiției.
  2. Setați dacă funcția este pară sau impară. Reamintim că o funcție pară este una care îndeplinește condiția f(-x)=f(x). Graficul său este simetric față de Oy. O funcție va fi impară dacă îndeplinește condiția f(-x)=-f(x). În acest caz, graficul este simetric față de origine.
  3. Găsiți punctele de intersecție cu axele de coordonate. Pentru a găsi abscisa punctului de intersecție cu axa Ox, este necesar să se rezolve ecuația f(x) = 0 (ordonata este egală cu 0). Pentru a găsi ordonata punctului de intersecție cu axa Oy, este necesar să substituiți 0 în funcție în loc de variabila x (abscisa este 0).
  4. Găsiți asimptotele funcției. Un asyptot este o linie dreaptă de care graficul se apropie la nesfârșit, dar nu o traversează niciodată. Să ne dăm seama cum să găsim asimptotele graficului unei funcții.
    • Asimptota verticală a dreptei x=a
    • Asimptotă orizontală - linie dreaptă y=a
    • Asimptotă oblică - linie dreaptă de forma y=kx+b
  5. Aflați punctele extreme ale funcției, intervalele de creștere și scădere ale funcției. Să găsim punctele extreme ale funcției. Pentru a face acest lucru, trebuie să găsiți prima derivată și să o echivalați cu 0. În aceste puncte funcția se poate schimba de la creștere la descreștere. Să determinăm semnul derivatei pe fiecare interval. Dacă derivata este pozitivă, atunci graficul funcției crește dacă este negativă, scade.
  6. Găsiți punctele de inflexiune ale graficului funcției, intervalele de convexitate în sus și în jos.

Găsirea punctelor de inflexiune este acum mai ușoară ca niciodată. Trebuie doar să găsiți derivata a doua, apoi să o echivalați cu zero. În continuare găsim semnul derivatei a doua pe fiecare interval. Dacă este pozitivă, atunci graficul funcției este convex în jos, dacă este negativ, este convex în sus.



 

Ar putea fi util să citiți: