Formula de trigonometrie tangentă. Ecuații trigonometrice - formule, soluții, exemple

Ne continuăm conversația despre cele mai utilizate formule în trigonometrie. Cele mai importante dintre ele sunt formulele de adunare.

Definiția 1

Formulele de adunare vă permit să exprimați funcții ale diferenței sau ale sumei a două unghiuri folosind funcții trigonometrice ale acelor unghiuri.

Pentru început, vom oferi o listă completă de formule de adunare, apoi le vom dovedi și vom analiza câteva exemple ilustrative.

Yandex.RTB R-A-339285-1

Formule de bază de adunare în trigonometrie

Există opt formule de bază: sinusul sumei și sinusul diferenței a două unghiuri, cosinusuri ale sumei și diferenței, tangente și cotangente ale sumei și, respectiv, diferenței. Mai jos sunt formulările și calculele lor standard.

1. Sinusul sumei a două unghiuri se poate obține astfel:

Se calculează produsul dintre sinusul primului unghi și cosinusul celui de-al doilea;

Înmulțiți cosinusul primului unghi cu sinusul primului unghi;

Adunați valorile rezultate.

Scrierea grafică a formulei arată astfel: sin (α + β) = sin α · cos β + cos α · sin β

2. Sinusul diferenței este calculat aproape în același mod, numai produsele rezultate nu trebuie adăugate, ci scăzute unul de celălalt. Astfel, calculăm produsele sinusului primului unghi cu cosinusul celui de-al doilea și cosinusul primului unghi cu sinusul celui de-al doilea și găsim diferența lor. Formula se scrie astfel: sin (α - β) = sin α · cos β + sin α · sin β

3. Cosinusul sumei. Pentru aceasta, găsim produsele cosinusului primului unghi cu cosinusul celui de-al doilea și respectiv sinusul primului unghi cu sinusul celui de-al doilea și, respectiv, găsim diferența lor: cos (α + β) = cos α · cos β - sin α · sin β

4. Cosinusul diferenței: calculați produsele sinusurilor și cosinusurilor acestor unghiuri, ca mai înainte, și adăugați-le. Formula: cos (α - β) = cos α cos β + sin α sin β

5. Tangenta sumei. Această formulă este exprimată ca o fracție, al cărei numărător este suma tangentelor unghiurilor necesare, iar numitorul este o unitate din care se scade produsul tangentelor unghiurilor dorite. Totul este clar din notația sa grafică: t g (α + β) = t g α + t g β 1 - t g α · t g β

6. Tangenta diferenței. Calculăm valorile diferenței și produsul tangentelor acestor unghiuri și procedăm cu ele într-un mod similar. La numitor adunam la unu, si nu invers: t g (α - β) = t g α - t g β 1 + t g α · t g β

7. Cotangenta sumei. Pentru a calcula folosind această formulă, vom avea nevoie de produsul și suma cotangentelor acestor unghiuri, pe care le procedăm astfel: c t g (α + β) = - 1 + c t g α · c t g β c t g α + c t g β

8. Cotangente a diferenței . Formula este similară cu cea anterioară, dar numărătorul și numitorul sunt minus, nu plus c t g (α - β) = - 1 - c t g α · c t g β c t g α - c t g β.

Probabil ați observat că aceste formule sunt similare în perechi. Folosind semnele ± (plus-minus) și ∓ (minus-plus), le putem grupa pentru a ușura înregistrarea:

sin (α ± β) = sin α · cos β ± cos α · sin β cos (α ± β) = cos α · cos β ∓ sin α · sin β t g (α ± β) = t g α ± t g β 1 ∓ t g α · t g β c t g (α ± β) = - 1 ± c t g α · c t g β c t g α ± c t g β

În consecință, avem o formulă de înregistrare pentru suma și diferența fiecărei valori, doar într-un caz acordăm atenție semnului superior, în celălalt – celui de jos.

Definiția 2

Putem lua orice unghi α și β, iar formulele de adunare pentru cosinus și sinus vor funcționa pentru ele. Dacă putem determina corect valorile tangentelor și cotangentelor acestor unghiuri, atunci formulele de adunare pentru tangente și cotangente vor fi valabile și pentru ele.

La fel ca majoritatea conceptelor din algebră, formulele de adunare pot fi dovedite. Prima formulă pe care o vom demonstra este formula cosinusului diferenței. Restul dovezilor pot fi apoi deduse cu ușurință din acestea.

Să clarificăm conceptele de bază. Vom avea nevoie de un cerc unitar. Va funcționa dacă luăm un anumit punct A și rotim unghiurile α și β în jurul centrului (punctul O). Atunci unghiul dintre vectorii O A 1 → și O A → 2 va fi egal cu (α - β) + 2 π · z sau 2 π - (α - β) + 2 π · z (z este orice număr întreg). Vectorii rezultați formează un unghi care este egal cu α - β sau 2 π - (α - β), sau poate diferi de aceste valori cu un număr întreg de rotații complete. Aruncă o privire la poză:

Am folosit formulele de reducere și am obținut următoarele rezultate:

cos ((α - β) + 2 π z) = cos (α - β) cos (2 π - (α - β) + 2 π z) = cos (α - β)

Rezultat: cosinusul unghiului dintre vectorii O A 1 → și O A 2 → este egal cu cosinusul unghiului α - β, deci cos (O A 1 → O A 2 →) = cos (α - β).

Să ne amintim definițiile sinusului și cosinusului: sinusul este o funcție a unghiului, egal cu raportul catetei unghiului opus față de ipotenuză, cosinusul este sinusul unghiului complementar. Prin urmare, punctele A 1Și A 2 au coordonatele (cos α, sin α) și (cos β, sin β).

Obținem următoarele:

O A 1 → = (cos α, sin α) și O A 2 → = (cos β, sin β)

Dacă nu este clar, priviți coordonatele punctelor situate la începutul și la sfârșitul vectorilor.

Lungimile vectorilor sunt egale cu 1, deoarece Avem un cerc unitar.

Să analizăm acum produsul scalar al vectorilor O A 1 → și O A 2 → . În coordonate arată astfel:

(O A 1 → , O A 2) → = cos α · cos β + sin α · sin β

Din aceasta putem deduce egalitatea:

cos (α - β) = cos α cos β + sin α sin β

Astfel, formula cosinusului diferenței este dovedită.

Acum vom demonstra următoarea formulă - cosinusul sumei. Acest lucru este mai ușor deoarece putem folosi calculele anterioare. Să luăm reprezentarea α + β = α - (- β) . Avem:

cos (α + β) = cos (α - (- β)) = = cos α cos (- β) + sin α sin (- β) = = cos α cos β + sin α sin β

Aceasta este dovada formulei sumei cosinus. Ultima linie folosește proprietatea sinusului și cosinusului unghiurilor opuse.

Formula pentru sinusul unei sume poate fi derivată din formula pentru cosinusul unei diferențe. Să luăm formula de reducere pentru aceasta:

de forma sin (α + β) = cos (π 2 (α + β)). Asa de
sin (α + β) = cos (π 2 (α + β)) = cos ((π 2 - α) - β) = = cos (π 2 - α) cos β + sin (π 2 - α) sin β = = sin α cos β + cos α sin β

Și iată dovada formulei diferenței sinus:

sin (α - β) = sin (α + (- β)) = sin α cos (- β) + cos α sin (- β) = = sin α cos β - cos α sin β
Observați utilizarea proprietăților sinus și cosinus ale unghiurilor opuse în ultimul calcul.

În continuare avem nevoie de dovezi ale formulelor de adunare pentru tangentă și cotangentă. Să ne amintim definițiile de bază (tangenta este raportul dintre sinus și cosinus, iar cotangenta este invers) și să luăm formulele deja derivate în avans. Am reușit:

t g (α + β) = sin (α + β) cos (α + β) = sin α cos β + cos α sin β cos α cos β - sin α sin β

Avem o fracție complexă. În continuare, trebuie să împărțim numărătorul și numitorul la cos α · cos β, având în vedere că cos α ≠ 0 și cos β ≠ 0, obținem:
sin α · cos β + cos α · sin β cos α · cos β cos α · cos β - sin α · sin β cos α · cos β = sin α · cos β cos α · cos β + cos α · sin β cos α · cos β cos α · cos β cos α · cos β - sin α · sin β cos α · cos β

Acum reducem fracțiile și obținem următoarea formulă: sin α cos α + sin β cos β 1 - sin α cos α · s i n β cos β = t g α + t g β 1 - t g α · t g β.
Se obține t g (α + β) = t g α + t g β 1 - t g α · t g β. Aceasta este dovada formulei de adiție tangente.

Următoarea formulă pe care o vom demonstra este tangenta formulei diferenței. Totul se arată clar în calcule:

t g (α - β) = t g (α + (- β)) = t g α + t g (- β) 1 - t g α t g (- β) = t g α - t g β 1 + t g α t g β

Formulele pentru cotangente sunt dovedite într-un mod similar:
c t g (α + β) = cos (α + β) sin (α + β) = cos α · cos β - sin α · sin β sin α · cos β + cos α · sin β = = cos α · cos β - sin α · sin β sin α · sin β sin α · cos β + cos α · sin β sin α · sin β = cos α · cos β sin α · sin β - 1 sin α · cos β sin α · sin β + cos α · sin β sin α · sin β = = - 1 + c t g α · c t g β c t g α + c t g β
Mai departe:
c t g (α - β) = c t g  (α + (- β)) = - 1 + c t g α c t g (- β) c t g α + c t g (- β) = - 1 - c t g α c t g β c t g α - c t g β

Centrat într-un punct A.
α - unghi exprimat în radiani.

Definiție
Sinus (sin α) este o funcție trigonometrică în funcție de unghiul α dintre ipotenuză și catetul unui triunghi dreptunghic, egal cu raportul dintre lungimea catetului opus |BC| la lungimea ipotenuzei |AC|.

Cosinus (cos α) este o funcție trigonometrică în funcție de unghiul α dintre ipotenuză și catetul unui triunghi dreptunghic, egal cu raportul dintre lungimea catetei adiacente |AB| la lungimea ipotenuzei |AC|.

Notatii acceptate

;
;
.

;
;
.

Graficul funcției sinus, y = sin x

Graficul funcției cosinus, y = cos x


Proprietățile sinusului și cosinusului

Periodicitate

Funcțiile y = sin xși y = cos x periodic cu punct .

Paritate

Funcția sinus este impară. Funcția cosinus este pară.

Domeniul definirii si valorilor, extrema, crestere, scadere

Funcțiile sinus și cosinus sunt continue în domeniul lor de definiție, adică pentru tot x (vezi dovada continuității). Principalele lor proprietăți sunt prezentate în tabel (n - întreg).

y = sin x y = cos x
Domeniul de aplicare și continuitatea - ∞ < x < + ∞ - ∞ < x < + ∞
Gama de valori -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Crescând
Descendentă
Maxima, y ​​= 1
Minima, y ​​= - 1
Zerouri, y = 0
Interceptarea punctelor cu axa ordonatelor, x = 0 y = 0 y = 1

Formule de bază

Suma pătratelor sinusului și cosinusului

Formule pentru sinus și cosinus din sumă și diferență



;
;

Formule pentru produsul sinusurilor și cosinusurilor

Formule de sumă și diferență

Exprimarea sinusului prin cosinus

;
;
;
.

Exprimarea cosinusului prin sinus

;
;
;
.

Exprimarea prin tangentă

; .

Când avem:
; .

La:
; .

Tabel de sinusuri și cosinusuri, tangente și cotangente

Acest tabel arată valorile sinusurilor și cosinusurilor pentru anumite valori ale argumentului.

Expresii prin variabile complexe


;

formula lui Euler

Expresii prin funcții hiperbolice

;
;

Derivate

; . Derivarea formulelor > > >

Derivate de ordin al n-lea:
{ -∞ < x < +∞ }

Secant, cosecant

Funcții inverse

Funcțiile inverse ale sinusului și cosinusului sunt arcsinus și, respectiv, arccosinus.

Arcsin, arcsin

Arccosine, arccos

Referinte:
ÎN. Bronstein, K.A. Semendyaev, Manual de matematică pentru ingineri și studenți, „Lan”, 2009.

Formulele de trigonometrie de bază sunt formule care stabilesc conexiuni între funcțiile trigonometrice de bază. Sinusul, cosinusul, tangenta și cotangenta sunt interconectate prin multe relații. Mai jos vă prezentăm principalele formule trigonometrice, iar pentru comoditate le vom grupa după scop. Folosind aceste formule puteți rezolva aproape orice problemă dintr-un curs standard de trigonometrie. Să observăm imediat că mai jos sunt doar formulele în sine, și nu concluzia lor, care vor fi discutate în articole separate.

Yandex.RTB R-A-339285-1

Identități de bază ale trigonometriei

Identitățile trigonometrice oferă o relație între sinusul, cosinusul, tangenta și cotangenta unui unghi, permițând unei funcții să fie exprimată în termenii altuia.

Identități trigonometrice

sin 2 a + cos 2 a = 1 t g α = sin α cos α , c t g α = cos α sin α t g α c t g α = 1 t g 2 α + 1 = 1 cos 2 α , c t g 2 α + 1 = 1 sin 2 α

Aceste identități rezultă direct din definițiile cercului unitar, sinus (sin), cosinus (cos), tangente (tg) și cotangente (ctg).

Formule de reducere

Formulele de reducere vă permit să treceți de la lucrul cu unghiuri arbitrare și arbitrar mari la lucrul cu unghiuri cuprinse între 0 și 90 de grade.

Formule de reducere

sin α + 2 π z = sin α , cos α + 2 π z = cos α t g α + 2 π z = t g α , c t g α + 2 π z = c t g α sin - α + 2 π z = - sin α , cos - α + 2 π z = cos α t g - α + 2 π z = - t g α , c t g - α + 2 π z = - c t g α sin π 2 + α + 2 π z = cos α , cos π 2 + α + 2 π z = - sin α t g π 2 + α + 2 π z = - c t g α , c t g π 2 + α + 2 π z = - t g α sin π 2 - α + 2 π z = cos α , cos π 2 - α + 2 π z = sin α t g π 2 - α + 2 π z = c t g α , c t g π 2 - α + 2 π z = t g α sin π + α + 2 π z = - sin α , cos π + α + 2 π z = - cos α t g π + α + 2 π z = t g α , c t g π + α + 2 π z = c t g α sin π - α + 2 π z = sin α , cos π - α + 2 π z = - cos α t g π - α + 2 π z = - t g α , c t g π - α + 2 π z = - c t g α sin 3 π 2 + α + 2 π z = - cos α , cos 3 π 2 + α + 2 π z = sin α t g 3 π 2 + α + 2 π z = - c t g α , c t g 3 π 2 + α + 2 π z = - t g α sin 3 π 2 - α + 2 π z = - cos α , cos 3 π 2 - α + 2 π z = - sin α t g 3 π 2 - α + 2 π z = c t g α , c t g 3 π 2 - α + 2 π z = t g α

Formulele de reducere sunt o consecință a periodicității funcțiilor trigonometrice.

Formule trigonometrice de adunare

Formulele de adunare în trigonometrie vă permit să exprimați funcția trigonometrică a sumei sau diferenței unghiurilor în termeni de funcții trigonometrice ale acestor unghiuri.

Formule trigonometrice de adunare

sin α ± β = sin α · cos β ± cos α · sin β cos α + β = cos α · cos β - sin α · sin β cos α - β = cos α · cos β + sin α · sin β t g α ± β = t g α ± t g β 1 ± t g α t g β c t g α ± β = - 1 ± c t g α c t g β c t g α ± c t g β

Pe baza formulelor de adunare, sunt derivate formule trigonometrice pentru unghiuri multiple.

Formule pentru unghiuri multiple: dublu, triplu etc.

Formule cu unghi dublu și triplu

sin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α - sin 2 α , cos 2 α = 1 - 2 sin 2 α , cos 2 α = 2 cos 2 α - 1 t g 2 α = 2 · t g α 1 - t g 2 α cu t g 2 α = cu t g 2 α - 1 2 · cu t g α sin 3 α = 3 sin α · cos 2 α - sin 3 α , sin 3 α = 3 sin α - 4 sin 3 α cos 3 α = cos 3 α - 3 sin 2 α · cos α , cos 3 α = - 3 cos α + 4 cos 3 α t g 3 α = 3 t g α - t g 3 α 1 - 3 t g 2 α c t g 3 α = c t g 3 α - 3 c t g α 3 c t g 2 α - 1

Formule cu jumătate de unghi

Formulele cu semiunghi în trigonometrie sunt o consecință a formulelor cu dublu unghi și exprimă relația dintre funcțiile de bază ale unui semiunghi și cosinusul unui unghi întreg.

Formule cu jumătate de unghi

sin 2 α 2 = 1 - cos α 2 cos 2 α 2 = 1 + cos α 2 t g 2 α 2 = 1 - cos α 1 + cos α c t g 2 α 2 = 1 + cos α 1 - cos α

Formule de reducere a gradului

Formule de reducere a gradului

sin 2 α = 1 - cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 α = 3 sin α - sin 3 α 4 cos 3 α = 3 cos α + cos 3 α 4 sin 4 α = 3 - 4 cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 cos 2 α + cos 4 α 8

Este adesea incomod să lucrezi cu puteri greoaie atunci când faci calcule. Formulele de reducere a gradului vă permit să reduceți gradul unei funcții trigonometrice de la arbitrar mare la prima. Iată viziunea lor generală:

Vedere generală a formulelor de reducere a gradului

pentru chiar n

sin n α = C n 2 n 2 n + 1 2 n - 1 ∑ k = 0 n 2 - 1 (- 1) n 2 - k · C k n · cos ((n - 2 k) α) cos n α = C n 2 n 2 n + 1 2 n - 1 ∑ k = 0 n 2 - 1 C k n cos ((n - 2 k) α)

pentru n. impar

sin n α = 1 2 n - 1 ∑ k = 0 n - 1 2 (- 1) n - 1 2 - k C k n sin ((n - 2 k) α) cos n α = 1 2 n - 1 ∑ k = 0 n - 1 2 C k n cos ((n - 2 k) α)

Suma și diferența funcțiilor trigonometrice

Diferența și suma funcțiilor trigonometrice pot fi reprezentate ca produs. Factorizarea diferențelor de sinusuri și cosinus este foarte convenabilă de utilizat atunci când rezolvați ecuații trigonometrice și simplificați expresii.

Suma și diferența funcțiilor trigonometrice

sin α + sin β = 2 sin α + β 2 cos α - β 2 sin α - sin β = 2 sin α - β 2 cos α + β 2 cos α + cos β = 2 cos α + β 2 cos α - β 2 cos α - cos β = - 2 sin α + β 2 sin α - β 2 , cos α - cos β = 2 sin α + β 2 sin β - α 2

Produsul funcțiilor trigonometrice

Dacă formulele pentru suma și diferența funcțiilor permit să mergem la produsul lor, atunci formulele pentru produsul funcțiilor trigonometrice efectuează tranziția inversă - de la produs la sumă. Sunt luate în considerare formulele pentru produsul dintre sinusuri, cosinus și sinus cu cosinus.

Formule pentru produsul funcțiilor trigonometrice

sin α · sin β = 1 2 · (cos (α - β) - cos (α + β)) cos α · cos β = 1 2 · (cos (α - β) + cos (α + β)) sin α cos β = 1 2 (sin (α - β) + sin (α + β))

Substituție trigonometrică universală

Toate funcțiile trigonometrice de bază - sinus, cosinus, tangentă și cotangentă - pot fi exprimate în termenii tangentei unui jumătate de unghi.

Substituție trigonometrică universală

sin α = 2 t g α 2 1 + t g 2 α 2 cos α = 1 - t g 2 α 2 1 + t g 2 α 2 t g α = 2 t g α 2 1 - t g 2 α 2 c t g α = 1 - t g 2 α 2 2 t g α 2

Dacă observați o eroare în text, vă rugăm să o evidențiați și să apăsați Ctrl+Enter

Cursul video „Obțineți A” include toate subiectele necesare pentru a promova cu succes Examenul de stat unificat la matematică cu 60-65 de puncte. Complet toate sarcinile 1-13 ale Examenului de stat Profil unificat la matematică. De asemenea, potrivit pentru promovarea examenului de stat unificat de bază la matematică. Dacă vrei să promovezi examenul de stat unificat cu 90-100 de puncte, trebuie să rezolvi partea 1 în 30 de minute și fără greșeli!

Curs de pregătire pentru Examenul Unificat de Stat pentru clasele 10-11, precum și pentru profesori. Tot ce aveți nevoie pentru a rezolva partea 1 a examenului de stat unificat la matematică (primele 12 probleme) și problema 13 (trigonometrie). Și acesta este mai mult de 70 de puncte la examenul de stat unificat și nici un student cu 100 de puncte, nici un student la științe umaniste nu se pot descurca fără ele.

Toată teoria necesară. Soluții rapide, capcane și secrete ale examenului de stat unificat. Au fost analizate toate sarcinile curente ale părții 1 din Banca de activități FIPI. Cursul respectă pe deplin cerințele Examenului de stat unificat 2018.

Cursul conține 5 subiecte mari, câte 2,5 ore fiecare. Fiecare subiect este dat de la zero, simplu și clar.

Sute de sarcini de examen de stat unificat. Probleme cu cuvinte și teoria probabilității. Algoritmi simpli și ușor de reținut pentru rezolvarea problemelor. Geometrie. Teorie, material de referință, analiza tuturor tipurilor de sarcini de examinare unificată de stat. Stereometrie. Soluții complicate, cheat sheets utile, dezvoltarea imaginației spațiale. Trigonometrie de la zero la problema 13. Înțelegerea în loc de înghesuială. Explicații clare ale conceptelor complexe. Algebră. Rădăcini, puteri și logaritmi, funcție și derivată. O bază pentru rezolvarea problemelor complexe din partea 2 a examenului de stat unificat.



 

Ar putea fi util să citiți: