Основні елементарні функції, їх властивості та графіки. Дослідження графіка функції Функції ур

Виберемо на площині прямокутну систему координат і відкладатимемо на осі абсцис значення аргументу х, але в осі ординат - значення функції у = f(х).

Графіком функції y = f(x)називається безліч всіх точок, у яких абсциси належать області визначення функції, а ординати дорівнюють відповідним значенням функції.

Іншими словами, графік функції y = f(х) - це безліч усіх точок площини, координати х, уяких задовольняють співвідношення y = f(x).



На рис. 45 та 46 наведено графіки функцій у = 2х + 1і у = х 2 - 2х.

Строго кажучи, слід розрізняти графік функції (точне математичне визначення якого було дано вище) і накреслену криву, яка завжди дає лише більш менш точний ескіз графіка (та й те, як правило, не всього графіка, а лише його частини, розташованого в кінцевій частини площини). Надалі, однак, ми зазвичай говоритимемо «графік», а не «ескіз графіка».

За допомогою графіка можна знаходити значення функції у точці. Саме, якщо точка х = аналежить області визначення функції y = f(x), то для знаходження числа f(а)(тобто значення функції у точці х = а) слід вчинити так. Потрібно через крапку з абсцисою х = апровести пряму, паралельну осі ординат; ця пряма перетне графік функції y = f(x)в одній точці; ордината цієї точки і буде, з визначення графіка, дорівнює f(а)(Рис. 47).



Наприклад, для функції f(х) = х 2 - 2xза допомогою графіка (рис. 46) знаходимо f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 і т.д.

Графік функції наочно ілюструє поведінку та властивості функції. Наприклад, із розгляду рис. 46 ясно, що функція у = х 2 - 2хнабуває позитивних значень при х< 0 і при х > 2, Негативні - при 0< x < 2; наименьшее значение функция у = х 2 - 2хприймає за х = 1.

Для побудови графіка функції f(x)потрібно знайти всі точки площини, координати х,уяких задовольняють рівняння y = f(x). Найчастіше це зробити неможливо, оскільки таких точок нескінченно багато. Тому графік функції зображують приблизно з більшою або меншою точністю. Найпростішим є метод побудови графіка за кількома точками. Він у тому, що аргументу хнадають кінцеве число значень - скажімо, х 1, х 2, x 3, ..., х k і становлять таблицю, до якої входять вибрані значення функції.

Таблиця виглядає так:



Склавши таку таблицю, ми можемо намітити кілька точок графіка функції y = f(x). Потім, з'єднуючи ці точки плавною лінією, ми отримуємо приблизний вид графіка функції y = f(x).

Слід зазначити, що метод побудови графіка за кількома точками дуже ненадійний. Насправді поведінка графіка між наміченими точками та поведінка його поза відрізком між крайніми зі взятих точок залишається невідомою.

Приклад 1. Для побудови графіка функції y = f(x)хтось склав таблицю значень аргументу та функції:




Відповідні п'ять точок показано на рис. 48.



На підставі розташування цих точок він зробив висновок, що графік функції є прямою (показану на рис. 48 пунктиром). Чи можна вважати цей висновок надійним? Якщо немає додаткових міркувань, які б підтверджували цей висновок, його навряд чи можна вважати надійним. надійним.

Для обґрунтування свого твердження розглянемо функцію

.

Обчислення показують, що значення цієї функції в точках -2, -1, 0, 1, 2 описуються наведеною вище таблицею. Однак графік цієї функції не є прямою лінією (він показаний на рис. 49). Іншим прикладом може бути функція y = x + l + sinπx;її значення теж описуються наведеною вище таблицею.

Ці приклади показують, що у «чистому» вигляді метод побудови графіка за кількома точками ненадійний. Тому для побудови графіка заданої функції, як правило, надходять у такий спосіб. Спочатку вивчають властивості цієї функції, з допомогою яких можна побудувати ескіз графіка. Потім, обчислюючи значення функції кількох точках (вибір яких залежить від встановлених властивостей функції), знаходять відповідні точки графіка. І, нарешті, через побудовані точки проводять криву, використовуючи властивості цієї функції.

Деякі (найпростіші і найчастіше використовувані) властивості функцій, застосовувані перебування ескізу графіка, ми розглянемо пізніше, тепер розберемо деякі часто застосовувані методи побудови графіків.


Графік функції у = | f (x) |.

Нерідко доводиться будувати графік функції y = | f (x)|, де f(х) -задана функція. Нагадаємо, як це робиться. За визначенням абсолютної величини числа можна написати

Це означає, що графік функції y = | f (x) |можна отримати з графіка, функції y = f(x)наступним чином: всі точки графіка функції у = f(х), у яких ординати невід'ємні, слід залишити без зміни; далі, замість точок графіка функції y = f(x), що мають негативні координати, слід побудувати відповідні точки графіка функції у = -f(x)(тобто частина графіка функції
y = f(x), що лежить нижче осі х,слід симетрично відобразити щодо осі х).



приклад 2.Побудувати графік функції у = | х |.

Беремо графік функції у = х(рис. 50, а) та частина цього графіка при х< 0 (що лежить під віссю х) симетрично відбиваємо щодо осі х. В результаті ми отримуємо графік функції у = | х |(Рис. 50, б).

Приклад 3. Побудувати графік функції y = | x 2 - 2x |.


Спочатку збудуємо графік функції y = x 2 – 2x.Графік цієї функції - парабола, гілки якої спрямовані вгору, вершина параболи має координати (1; -1), її графік перетинає вісь абсцис у точках 0 і 2. На проміжку (0; 2) фукція набуває негативних значень, тому саме цю частину графіка симетрично відобразимо щодо осі абсцис. На малюнку 51 побудовано графік функції у = | х 2 -2х |виходячи з графіка функції у = х 2 - 2x

Графік функції y = f(x) + g(x)

Розглянемо задачу побудови графіка функції y = f(x) + g(x).якщо задані графіки функцій y = f(x)і y = g(x).

Зауважимо, що область визначення функції y = |f(x) + g(х)| є безліч всіх тих значень х, для яких визначені обидві функції y = f(x) і у = g(х), тобто ця область визначення є перетином областей визначення, функцій f(x) і g(x).

Нехай крапки (х 0 , y 1) та (х 0, у 2) відповідно належать графікам функцій y = f(x)і y = g(х), Т. е. y 1 = f(x0), y2=g(х0).Тоді точка (x0;. y1 + y2) належить графіку функції у = f(х) + g(х)(бо f(х 0) + g(x 0) = y 1+y2),. причому будь-яка точка графіка функції y = f(x) + g(x)може бути отримана в такий спосіб. Отже, графік функції у = f(x) + g(x)можна отримати з графіків функцій y = f(x). і y = g(х)заміною кожної точки ( х n , у 1) графік функції y = f(x)точкою (х n, y 1 + y 2),де у 2 = g(x n), тобто зсувом кожної точки ( х n , у 1) графіка функції y = f(x)вздовж осі уна величину y 1 = g(х n). При цьому розглядаються лише такі точки х n для яких визначено обидві функції y = f(x)і y = g(x).

Такий метод побудови графіка функції y = f(x) + g(х) називається додаванням графіків функцій y = f(x)і y = g(x)

Приклад 4. На малюнку методом складання графіків побудовано графік функції
y = x + sinx.

При побудові графіка функції y = x + sinxми вважали, що f(x) = x,а g(x) = sinx.Для побудови графіка функції виберемо крапки з aбцисами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значення f(x) = x, g(x) = sinx, y = x + sinxобчислимо у вибраних точках і результати помістимо у таблиці.


Даний методичний матеріал має довідковий характер і відноситься до широкого кола тем. У статті наведено огляд графіків основних елементарних функцій та розглянуто найважливіше питання – як правильно і ШВИДКО побудувати графік. У ході вивчення вищої математики без знання графіків основних елементарних функцій доведеться важко, тому дуже важливо згадати, як виглядають графіки параболи, гіперболи, синуси, косинуси і т.д., запам'ятати деякі значення функцій. Також мова піде про деякі властивості основних функцій.

Я не претендую на повноту та наукову обґрунтованість матеріалів, наголос буде зроблено, перш за все, на практиці – тих речах, з якими доводиться стикатися буквально на кожному кроці, у будь-якій темі вищої математики. Графіки для чайників? Можна сказати і так.

На численні прохання читачів клікабельний зміст:

Крім того, є надкороткий конспект на тему
– освойте 16 видів графіків, вивчивши шість сторінок!

Серйозно, шість, здивувався навіть сам. Даний конспект містить покращену графіку і доступний за символічну плату, демо-версію можна подивитися. Файл зручно надрукувати, щоб графіки завжди були під рукою. Дякуємо за підтримку проекту!

І одразу починаємо:

Як правильно збудувати координатні осі?

На практиці контрольні роботи майже завжди оформляються студентами в окремих зошитах, розлинених у клітку. Навіщо потрібна картата розмітка? Адже роботу, загалом, можна зробити і на листах А4. А клітка необхідна якраз для якісного та точного оформлення креслень.

Будь-яке креслення графіка функції починається з координатних осей.

Креслення бувають двомірними та тривимірними.

Спочатку розглянемо двовимірний випадок декартової прямокутної системи координат:

1) Чортимо координатні осі. Вісь називається віссю абсцис , а вісь – віссю ординат . Рисувати їх завжди намагаємося акуратно і не криво. Стрілки теж не повинні нагадувати бороду Папи Карло.

2) Підписуємо осі великими літерами «ікс» та «ігрок». Не забуваємо підписувати осі.

3) Задаємо масштаб по осях: малюємо нуль і дві одиниці. При виконанні креслення найзручніший і найпоширеніший масштаб: 1 одиниця = 2 клітинки (креслення зліва) – по можливості дотримуйтеся саме його. Однак іноді трапляється так, що креслення не вміщається на зошит - тоді масштаб зменшуємо: 1 одиниця = 1 клітинка (креслення праворуч). Рідко, але буває, що масштаб креслення доводиться зменшувати (чи збільшувати) ще більше

НЕ ТРЕБА «строчити з кулемету» …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, ….Бо координатна площина – не пам'ятник Декартові, а студент – не голуб. Ставимо нульі дві одиниці по осях. Іноді замістьодиниць зручно "засікти" інші значення, наприклад, "двійку" на осі абсцис і "трійку" на осі ординат - і ця система (0, 2 і 3) теж однозначно задасть координатну сітку.

Передбачувані розміри креслення краще оцінити ще до побудови креслення. Так, наприклад, якщо в завданні потрібно накреслити трикутник з вершинами , , , то зрозуміло, що популярний масштаб 1 одиниця = 2 клітинки не підійде. Чому? Подивимося на точку - тут доведеться відміряти п'ятнадцять сантиметрів вниз, і, очевидно, що креслення не вмоститься (або вмоститься ледве) на зошит. Тому одночасно вибираємо дрібніший масштаб 1 одиниця = 1 клітинка.

До речі, про сантиметри і зошити. Чи правда, що у 30 зошитових клітинах міститься 15 сантиметрів? Відміряйте у зошиті для інтересу 15 сантиметрів лінійкою. У СРСР, можливо, це було правдою… Цікаво відзначити, що якщо відміряти ці сантиметри по горизонталі та вертикалі, то результати (у клітинах) будуть різними! Строго кажучи, сучасні зошити не картаті, а прямокутні. Можливо, це здасться нісенітницею, але, креслити, наприклад, коло циркулем при таких розкладах дуже незручно. Якщо чесно, в такі моменти починаєш замислюватися про правоту товариша Сталіна, який відправляв у табори за халтуру на виробництві, не кажучи вже про вітчизняне автомобілебудування, літаки, що падають, або вибухові електростанції.

До речі про якість, або коротка рекомендація щодо канцтоварів. На сьогоднішній день більшість зошитів у продажу, поганих слів не кажучи, повне гомно. Тому, що вони промокають, причому не тільки від гелевих, а й від кулькових ручок! На папері заощаджують. Для оформлення контрольних робіт рекомендую використовувати зошити Архангельського ЦПК (18 аркушів, клітинка) або «П'ятірочка», щоправда, вона дорожча. Ручку бажано вибрати гелеву, навіть найдешевший китайський гелевий стрижень набагато краще, ніж кулькова ручка, яка маже, то б'є папір. Єдиною «конкурентоспроможною» кульковою ручкою на моїй пам'яті є «Еріх Краузе». Вона пише чітко, красиво та стабільно – що з повним стрижнем, що із практично порожнім.

Додатково: бачення прямокутної системи координат очима аналітичної геометрії висвітлюється у статті Лінійна (не) залежність векторів. Базис векторів, детальну інформацію про координатні чверті можна знайти у другому параграфі уроку Лінійні нерівності.

Тривимірний випадок

Тут майже так само.

1) Чортимо координатні осі. Стандарт: вісь аплікат – спрямована вгору, вісь – спрямована вправо, вісь – ліворуч вниз суворопід кутом 45 градусів.

2) Підписуємо осі.

3) Задаємо масштаб по осях. Масштаб по осі – вдвічі менше, ніж масштаб по інших осях. Також зверніть увагу, що на правому кресленні я використав нестандартну «засічку» по осі (про таку можливість вже згадано вище). На мій погляд, так точніше, швидше і естетичніше – не потрібно під мікроскопом вишукувати середину клітини і «ліпити» одиницю впритул до початку координат.

При виконанні тривимірного креслення знову ж таки – віддавайте пріоритет масштабу
1 одиниця = 2 клітини (креслення зліва).

Навіщо потрібні всі ці правила? Правила існують у тому, щоб їх порушувати. Чим я зараз і займусь. Справа в тому, що наступні креслення статті будуть виконані мною в Екселі, і координатні осі будуть виглядати некоректно з точки зору правильного оформлення. Я б міг накреслити всі графіки від руки, але креслити їх насправді жах як небажання Ексель їх накреслить набагато точніше.

Графіки та основні властивості елементарних функцій

Лінійна функція задається рівнянням. Графік лінійної функцій є пряму. Для того, щоб побудувати пряму, достатньо знати дві точки.

Приклад 1

Побудувати графік функції. Знайдемо дві точки. Як одну з точок вигідно вибрати нуль.

Якщо то

Беремо ще якусь точку, наприклад, 1.

Якщо то

При оформленні завдань координати точок зазвичай зводяться до таблиці:


А самі значення розраховуються усно чи на чернетці, калькуляторі.

Дві точки знайдені, виконаємо креслення:


При оформленні креслення завжди підписуємо графіки.

Не зайвим буде згадати окремі випадки лінійної функції:


Зверніть увагу, як я розташував підписи, підписи не повинні допускати різночитань щодо креслення. В даному випадку вкрай небажано було поставити підпис поруч із точкою перетину прямих або праворуч внизу між графіками.

1) Лінійна функція виду () називається прямою пропорційністю. Наприклад, . Графік прямої пропорційності завжди проходить через початок координат. Таким чином, побудова прямої спрощується - достатньо знайти лише одну точку.

2) Рівняння виду задає пряму, паралельну осі, зокрема, сама вісь задається рівнянням. Графік функції будується відразу, без будь-яких точок. Тобто запис слід розуміти так: «гравець завжди дорівнює -4, при будь-якому значенні ікс».

3) Рівняння виду задає пряму, паралельну осі, зокрема, сама вісь задається рівнянням. Графік функції також будується одразу. Запис слід розуміти так: «ікс завжди, за будь-якого значення ігор, дорівнює 1».

Дехто запитає, ну навіщо згадувати 6 клас?! Так-то воно, може і так, тільки за роки практики я зустрів добрий десяток студентів, яких ставило в глухий кут завдання побудови графіка на кшталт або .

Побудова прямий – найпоширеніша дія у виконанні креслень.

Пряма лінія детально розглядається в курсі аналітичної геометрії, і бажаючі можуть звернутись до статті Рівняння прямої на площині.

Графік квадратичної, кубічної функції, графік багаточлена

Парабола. Графік квадратичної функції () являє собою параболу. Розглянемо знаменитий випадок:

Згадуємо деякі властивості функції.

Отже, рішення нашого рівняння: - Саме в цій точці і знаходиться вершина параболи. Чому це так, можна дізнатися з теоретичної статті про похідну та уроку про екстремуми функції . А поки що розраховуємо відповідне значення «гравець»:

Таким чином, вершина знаходиться в точці

Тепер знаходимо інші точки, при цьому нахабно користуємося симетричністю параболи. Слід зауважити, що функція не є парноюПроте, симетричність параболи ніхто не скасовував.

В якому порядку знаходити інші точки, гадаю, буде зрозуміло з підсумкової таблиці:

Даний алгоритм побудови образно можна назвати "човником" або принципом "туди-сюди" з Анфісою Чеховою.

Виконаємо креслення:


З розглянутих графіків згадується ще одна корисна ознака:

Для квадратичної функції () справедливо наступне:

Якщо , то гілки параболи спрямовані нагору.

Якщо , то гілки параболи спрямовані вниз.

Поглиблені знання про криву можна отримати на уроці гіпербола і парабола.

Кубічна парабола задається функцією. Ось знайоме зі школи креслення:


Перерахуємо основні властивості функції

Графік функції

Він є однією з гілок параболи. Виконаємо креслення:


Основні властивості функції:

В даному випадку вісь є вертикальною асимптотою для графіка гіперболи при .

Буде ГРУБИЙ помилкою, якщо при оформленні креслення з недбалості допустити перетин графіка з асимптотою .

Також односторонні межі говорять нам про те, що гіпербола не обмежена зверхуі не обмежена знизу.

Досліджуємо функцію на нескінченності: тобто якщо ми почнемо йти по осі вліво (або вправо) на нескінченність, то «ігреки» струнким кроком будуть нескінченно близьконаближатися до нуля, і, відповідно, гілки гіперболи нескінченно близьконаближатися до осі.

Таким чином, вісь є горизонтальною асимптотою для графіка функції, якщо «ікс» прагне плюс або мінус нескінченності.

Функція є непарний, отже, гіпербола симетрична щодо початку координат. Цей факт очевидний з креслення, крім того, легко перевіряється аналітично: .

Графік функції виду () являє собою дві гілки гіперболи.

Якщо , то гіпербола розташована в першій та третій координатних чвертях(Див. малюнок вище).

Якщо , то гіпербола розташована у другій та четвертій координатних чвертях..

Зазначену закономірність місця проживання гіперболи неважко проаналізувати з погляду геометричних перетворень графіків.

Приклад 3

Побудувати праву гілку гіперболи

Використовуємо поточковий метод побудови, при цьому значення вигідно підбирати так, щоб ділилося націло:

Виконаємо креслення:


Не важко побудувати і ліву гілку гіперболи, тут якраз допоможе непарність функції. Грубо кажучи, в таблиці поточкового побудови подумки додаємо до кожного мінус, ставимо відповідні точки і прокреслюємо другу гілку.

Детальну геометричну інформацію про розглянуту лінію можна знайти у статті Гіперболу та параболу.

Графік показової функції

У цьому параграфі я одразу розгляну експоненційну функцію, оскільки в завданнях вищої математики у 95% випадків зустрічається саме експонента.

Нагадую, що – це ірраціональне число: це буде потрібно при побудові графіка, який, власне, я без церемоній і побудую. Трьох точок, мабуть, вистачить:

Графік функції поки дамо спокій, про нього пізніше.

Основні властивості функції:

Принципово так само виглядають графіки функцій, і т.д.

Повинен сказати, що другий випадок зустрічається на практиці рідше, але він зустрічається, тому я вважав за потрібне включити його до цієї статті.

Графік логарифмічної функції

Розглянемо функцію з натуральним логарифмом.
Виконаємо крапковий креслення:

Якщо забули, що таке логарифм, будь ласка, зверніться до шкільних підручників.

Основні властивості функції:

Область визначення:

Область значень: .

Функція не обмежена зверху: , Нехай і повільно, але гілка логарифму йде на нескінченність.
Досліджуємо поведінку функції поблизу нуля праворуч: . Таким чином, вісь є вертикальною асимптотою для графіка функції при «ікс», що прагне до нуля праворуч.

Обов'язково потрібно знати та пам'ятати типове значення логарифму: .

Принципово так само виглядає графік логарифму на підставі: , , (десятковий логарифм на підставі 10) і т.д. При цьому, що більша підстава, то більш пологім буде графік.

Випадок розглядати не будемо, щось я не пригадаю, коли востаннє будував графік із такою підставою. Та й логарифм начебто в завданнях вищої математики дуже рідкісний гість.

На закінчення параграфа скажу ще про один факт: Експоненційна функція та логарифмічна функція– це дві взаємно зворотні функції. Якщо придивитися до графіка логарифму, то можна побачити, що це - та сама експонента, просто вона розташована трохи по-іншому.

Графіки тригонометричних функцій

З чого починаються тригонометричні муки у школі? Правильно. З синуса

Побудуємо графік функції

Ця лінія називається синусоїдою.

Нагадую, що «пі» – це ірраціональне число: і в тригонометрії від нього в очах рябить.

Основні властивості функції:

Ця функція є періодичноїз періодом. Що це означає? Подивимося на відрізок. Зліва і праворуч від нього нескінченно повторюється такий самий шматок графіка.

Область визначення: , тобто для будь-якого значення ікс існує значення синуса.

Область значень: . Функція є обмеженою: тобто всі «ігреки» сидять строго у відрізку .
Такого немає: чи , точніше кажучи, буває, але зазначені рівняння немає рішення.

Лінійною функцією називається функція виду y=kx+b, де x-незалежна змінна, k та b-будь-які числа.
Графік лінійної функції є пряма.

1. Щоб побудувати графік функції,нам потрібні координати двох точок, що належать графіку функції. Щоб їх знайти, потрібно взяти два значення х, підставити їх на рівняння функції, і за ними обчислити відповідні значення y.

Наприклад, щоб побудувати графік функції y=x+2, зручно взяти x=0 та x=3, тоді ординати цих точок дорівнюватимуть y=2 та y=3. Отримаємо точки А(0;2) та В(3;3). З'єднаємо їх та отримаємо графік функції y=x+2:

2. У формулі y=kx+b число k називається коефіцієнтом пропорційності:
якщо k>0, то функція y=kx+b зростає
якщо k
Коефіцієнт b показує усунення графіка функції вздовж осі OY:
якщо b>0, то графік функції y=kx+b виходить із графіка функціїy=kx зрушенням на b одиниць вгору вздовж осі OY
якщо b
На малюнку нижче зображено графіки функцій y=2x+3; y= ½ x+3; y=x+3

Зауважимо, що у всіх цих функціях коефіцієнт k більше нуля,та функції є зростаючими.Причому чим більше значення k, тим більше кут нахилу прямий до позитивного напрямку осі OX.

У всіх функціях b=3 – і бачимо, що це графіки перетинають вісь OY у точці (0;3)

Тепер розглянемо графіки функцій y=-2x+3; y=- ½ x+3; y=-x+3

На цей раз у всіх функціях коефіцієнт k менше нуля,та функції спадають.Коефіцієнт b=3, і графіки як у попередньому випадку перетинають вісь OY в точці (0;3)

Розглянемо графіки функцій y=2x+3; y=2x; y=2x-3

Тепер у всіх рівняннях функцій коефіцієнти k дорівнюють 2. І ми отримали три паралельні прямі.

Але коефіцієнти b різні, і ці графіки перетинають вісь OY у різних точках:
Графік функції y=2x+3 (b=3) перетинає вісь OY у точці (0;3)
Графік функції y=2x (b=0) перетинає вісь OY у точці (0;0) – початку координат.
Графік функції y=2x-3 (b=-3) перетинає вісь OY у точці (0;-3)

Отже, якщо знаємо знаки коефіцієнтів k і b, можемо відразу уявити, як виглядає графік функції y=kx+b.
Якщо k 0

Якщо k>0 та b>0, то графік функції y=kx+b має вигляд:

Якщо k>0 та b, то графік функції y=kx+b має вигляд:

Якщо k, то графік функції y=kx+b має вигляд:

Якщо k=0, то функція y=kx+b перетворюється на функцію y=b та її графік має вигляд:

Ординати всіх точок графіка функції y=b дорівнюють b Якщо b=0, То графік функції y = kx (пряма пропорційність) проходить через початок координат:

3. Окремо відзначимо графік рівняння x = a.Графік цього рівняння є пряму лінію, паралельну осі OY всі точки якої мають абсцису x=a.

Наприклад, графік рівняння x=3 виглядає так:
Увага!Рівняння x=a перестав бути функцією, тому одному значенню аргументу відповідають різні значення функції, що відповідає визначенню функції.


4. Умова паралельності двох прямих:

Графік функції y=k 1 x+b 1 паралельний графіку функції y=k 2 x+b 2 якщо k 1 =k 2

5. Умова перепендикулярності двох прямих:

Графік функції y=k 1 x+b 1 перепендикулярний графіку функції y=k 2 x+b 2 якщо k 1 *k 2 =-1 або k 1 =-1/k 2

6. Точки перетину графіка функції y=kx+b із осями координат.

З віссю ОY. Абсцис будь-якої точки, що належить осі ОY дорівнює нулю. Тому, щоб знайти точку перетину з віссю ОY потрібно в рівняння функції замість х підставити нуль. Отримаємо y=b. Тобто точка перетину з віссю OY має координати (0; b).

З віссю ОХ: Ордината будь-якої точки, що належить осі ОХ, дорівнює нулю. Тому, щоб знайти точку перетину з віссю ОХ, потрібно в рівняння функції замість y підставити нуль. Отримаємо 0=kx+b. Звідси x=-b/k. Тобто точка перетину з віссю OX має координати (-b/k; 0):

Побудувати функцію

Ми пропонуємо до вашої уваги сервіс з потроєння графіків функцій онлайн, всі права на який належать компанії Desmos. Для введення функцій скористайтесь лівою колонкою. Можна вводити вручну або за допомогою віртуальної клавіатури внизу вікна. Для збільшення вікна з графіком можна приховати як ліву колонку, і віртуальну клавіатуру.

Переваги побудови графіків онлайн

  • Візуальне відображення функцій, що вводяться
  • Побудова дуже складних графіків
  • Побудова графіків, заданих неявно (наприклад, еліпс x^2/9+y^2/16=1)
  • Можливість зберігати графіки та отримувати на них посилання, яке стає доступним для всіх в інтернеті.
  • Управління масштабом, кольором ліній
  • Можливість побудови графіків за точками, використання констант
  • Побудова одночасно кількох графіків функцій
  • Побудова графіків у полярній системі координат (використовуйте r та θ(\theta))

З нами легко в режимі онлайн будувати графіки різної складності. Побудова провадиться миттєво. Сервіс затребуваний знаходження точок перетину функцій, зображення графіків для подальшого їх переміщення у Word документ як ілюстрацій під час вирішення завдань, для аналізу поведінкових особливостей графіків функций. Оптимальним браузером для роботи з графіками на цій сторінці є Google Chrome. У разі використання інших браузерів коректність роботи не гарантується.

З завданням побудови графіка функції школярі зіштовхуються на початку вивчення алгебри і продовжують будувати їх рік у рік. Починаючи з графіка лінійної функції, для побудови якої потрібно знати всього дві точки, до параболи, для якої потрібно вже 6 точок, гіпербол і синусоїд. З кожним роком функції стають все складнішими і побудови їх графіків вже неможливо виконати за шаблоном, необхідно проводити складніші дослідження, користуючись похідними та межами.

Давайте розберемося, як знайти графік функції? Для цього почнемо з найпростіших функцій, графіки яких будуються за точками, а потім розглянемо план для побудови складніших функцій.

Побудова графіка лінійної функції

Для побудови найпростіших графіків використовують таблицю значень функції. Графік лінійної функції є пряма. Спробуємо знайти точки графіка функції y=4x+5.

  1. Для цього візьмемо два довільні значення змінної x, підставимо їх по черзі у функцію, знайдемо значення змінної y і занесемо все до таблиці.
  2. Візьмемо значення x=0 і підставимо на функцію замість x - 0. Отримаємо: y=4*0+5, тобто y=5 запишемо це значення у таблицю під 0. Аналогічно візьмемо x=0 отримаємо y=4*1+5 , y=9.
  3. Тепер, щоб побудувати графік функції, потрібно нанести на координатну площину ці точки. Потім потрібно провести пряму.

Побудова графіка квадратичної функції

Квадратична функція - це функція виду y = ax 2 + bx + c де x-змінна, a, b, c - числа (a не дорівнює 0). Наприклад: y=x 2 , y=x 2 +5, y=(x-3) 2 , y=2x 2 +3x+5.

Для побудови найпростішої квадратичної функції y=x2 зазвичай беруть 5-7 пікселів. Візьмемо значення для змінної x: -2, -1, 0, 1, 2 і знайдемо значення y як і при побудові першого графіка.

Графік квадратичної функції називають параболою. Після побудови графіків функції в учнів виникають нові завдання, пов'язані з графіком.

Приклад 1: знайдіть абсцису точки графіка функції y = x 2 якщо ордината дорівнює 9. Для вирішення задачі необхідно в функцію замість y підставити її значення 9. Отримаємо 9 = x 2 і вирішити це рівняння. x=3 та x=-3. Це можна побачити і на графіку функції.

Дослідження функції та побудова її графіка

Для побудови графіків складніших функцій необхідно виконати кілька кроків, вкладених у її дослідження. Для цього необхідно:

  1. Знайти область визначення функції. Область визначення - це значення які може приймати змінна x. З області визначення слід виключити ті точки, в яких знаменник звертається до 0 або підкорене вираз стає негативним.
  2. Встановити парність чи непарність функції. Нагадаємо, що парною є функція, яка відповідає умові f(-x)=f(x). Її графік є симетричним щодо Оу. Функція буде непарною, якщо вона відповідає умові f(-x)=-f(x). І тут графік симетричний щодо початку координат.
  3. Знайти точки перетину з осями координат. Для того, щоб знайти абсцис точки перетину з віссю Ох, необхідно вирішити рівняння f (x) = 0 (ордината при цьому дорівнює 0). Щоб знайти ординату точки перетину з віссю Оу, необхідно в функцію замість змінної x підставити 0 (абсцис дорівнює 0).
  4. Знайти асимптоти функції. Асиптота – пряма, до якої графік нескінченно наближається, але ніколи її не перетне. Давайте розберемося, як знайти асимптоти графіка функції.
    • Вертикальна асимптота прямого виду х=а
    • Горизонтальна асимптота - пряма виду у =
    • Похила асимптота - пряма різниця y=kx+b
  5. Знайти точки екстремуму функції, проміжки зростання та зменшення функції. Знайдемо точки екстремуму функції. Для цього необхідно знайти першу похідну і прирівняти її до 0. Саме в цих точках функція може змінитися зі зростаючою на спадну. Визначимо знак похідної кожному інтервалі. Якщо похідна позитивна, то графік функції зростає, якщо негативна – зменшується.
  6. Знайти точки перегину графіка функції, проміжки опуклості вгору та вниз.

Знайти точки перегину тепер найпростіше. Потрібно лише знайти другу похідну, потім прирівняти до нуля. Далі знаходимо знак другої похідної на кожному інтервалі. Якщо позитивний, графік функції опуклий вниз, якщо негативна - вгору.



 

Можливо, буде корисно почитати: